ddsp-demo / DDSP-SVC /data_loaders.py
pdjdev's picture
add ddsp-svc
85a7d2c
raw
history blame
8.94 kB
import os
import random
import numpy as np
import librosa
import torch
import random
from tqdm import tqdm
from torch.utils.data import Dataset
def traverse_dir(
root_dir,
extension,
amount=None,
str_include=None,
str_exclude=None,
is_pure=False,
is_sort=False,
is_ext=True):
file_list = []
cnt = 0
for root, _, files in os.walk(root_dir):
for file in files:
if file.endswith(extension):
# path
mix_path = os.path.join(root, file)
pure_path = mix_path[len(root_dir)+1:] if is_pure else mix_path
# amount
if (amount is not None) and (cnt == amount):
if is_sort:
file_list.sort()
return file_list
# check string
if (str_include is not None) and (str_include not in pure_path):
continue
if (str_exclude is not None) and (str_exclude in pure_path):
continue
if not is_ext:
ext = pure_path.split('.')[-1]
pure_path = pure_path[:-(len(ext)+1)]
file_list.append(pure_path)
cnt += 1
if is_sort:
file_list.sort()
return file_list
def get_data_loaders(args, whole_audio=False):
data_train = AudioDataset(
args.data.train_path,
waveform_sec=args.data.duration,
hop_size=args.data.block_size,
sample_rate=args.data.sampling_rate,
load_all_data=args.train.cache_all_data,
whole_audio=whole_audio,
n_spk=args.model.n_spk,
device=args.train.cache_device,
fp16=args.train.cache_fp16,
use_aug=True)
loader_train = torch.utils.data.DataLoader(
data_train ,
batch_size=args.train.batch_size if not whole_audio else 1,
shuffle=True,
num_workers=args.train.num_workers if args.train.cache_device=='cpu' else 0,
persistent_workers=(args.train.num_workers > 0) if args.train.cache_device=='cpu' else False,
pin_memory=True if args.train.cache_device=='cpu' else False
)
data_valid = AudioDataset(
args.data.valid_path,
waveform_sec=args.data.duration,
hop_size=args.data.block_size,
sample_rate=args.data.sampling_rate,
load_all_data=args.train.cache_all_data,
whole_audio=True,
n_spk=args.model.n_spk)
loader_valid = torch.utils.data.DataLoader(
data_valid,
batch_size=1,
shuffle=False,
num_workers=0,
pin_memory=True
)
return loader_train, loader_valid
class AudioDataset(Dataset):
def __init__(
self,
path_root,
waveform_sec,
hop_size,
sample_rate,
load_all_data=True,
whole_audio=False,
n_spk=1,
device = 'cpu',
fp16 = False,
use_aug = False
):
super().__init__()
self.waveform_sec = waveform_sec
self.sample_rate = sample_rate
self.hop_size = hop_size
self.path_root = path_root
self.paths = traverse_dir(
os.path.join(path_root, 'audio'),
extension='wav',
is_pure=True,
is_sort=True,
is_ext=False
)
self.whole_audio = whole_audio
self.use_aug = use_aug
self.data_buffer={}
if load_all_data:
print('Load all the data from :', path_root)
else:
print('Load the f0, volume data from :', path_root)
for name in tqdm(self.paths, total=len(self.paths)):
path_audio = os.path.join(self.path_root, 'audio', name) + '.wav'
duration = librosa.get_duration(filename = path_audio, sr = self.sample_rate)
path_f0 = os.path.join(self.path_root, 'f0', name) + '.npy'
f0 = np.load(path_f0)
f0 = torch.from_numpy(f0).float().unsqueeze(-1).to(device)
path_volume = os.path.join(self.path_root, 'volume', name) + '.npy'
volume = np.load(path_volume)
volume = torch.from_numpy(volume).float().unsqueeze(-1).to(device)
if n_spk is not None and n_spk > 1:
spk_id = int(os.path.dirname(name)) if str.isdigit(os.path.dirname(name)) else 0
if spk_id < 1 or spk_id > n_spk:
raise ValueError(' [x] Muiti-speaker traing error : spk_id must be a positive integer from 1 to n_spk ')
else:
spk_id = 1
spk_id = torch.LongTensor(np.array([spk_id])).to(device)
if load_all_data:
audio, sr = librosa.load(path_audio, sr=self.sample_rate)
if len(audio.shape) > 1:
audio = librosa.to_mono(audio)
audio = torch.from_numpy(audio).to(device)
path_units = os.path.join(self.path_root, 'units', name) + '.npy'
units = np.load(path_units)
units = torch.from_numpy(units).to(device)
if fp16:
audio = audio.half()
units = units.half()
self.data_buffer[name] = {
'duration': duration,
'audio': audio,
'units': units,
'f0': f0,
'volume': volume,
'spk_id': spk_id
}
else:
self.data_buffer[name] = {
'duration': duration,
'f0': f0,
'volume': volume,
'spk_id': spk_id
}
def __getitem__(self, file_idx):
name = self.paths[file_idx]
data_buffer = self.data_buffer[name]
# check duration. if too short, then skip
if data_buffer['duration'] < (self.waveform_sec + 0.1):
return self.__getitem__( (file_idx + 1) % len(self.paths))
# get item
return self.get_data(name, data_buffer)
def get_data(self, name, data_buffer):
frame_resolution = self.hop_size / self.sample_rate
duration = data_buffer['duration']
waveform_sec = duration if self.whole_audio else self.waveform_sec
# load audio
idx_from = 0 if self.whole_audio else random.uniform(0, duration - waveform_sec - 0.1)
start_frame = int(idx_from / frame_resolution)
units_frame_len = int(waveform_sec / frame_resolution)
audio = data_buffer.get('audio')
if audio is None:
path_audio = os.path.join(self.path_root, 'audio', name) + '.wav'
audio, sr = librosa.load(
path_audio,
sr = self.sample_rate,
offset = start_frame * frame_resolution,
duration = waveform_sec)
if len(audio.shape) > 1:
audio = librosa.to_mono(audio)
# clip audio into N seconds
audio = audio[ : audio.shape[-1] // self.hop_size * self.hop_size]
audio = torch.from_numpy(audio).float()
else:
audio = audio[start_frame * self.hop_size : (start_frame + units_frame_len) * self.hop_size]
# load units
units = data_buffer.get('units')
if units is None:
units = os.path.join(self.path_root, 'units', name) + '.npy'
units = np.load(units)
units = units[start_frame : start_frame + units_frame_len]
units = torch.from_numpy(units).float()
else:
units = units[start_frame : start_frame + units_frame_len]
# load f0
f0 = data_buffer.get('f0')
f0_frames = f0[start_frame : start_frame + units_frame_len]
# load volume
volume = data_buffer.get('volume')
volume_frames = volume[start_frame : start_frame + units_frame_len]
# load spk_id
spk_id = data_buffer.get('spk_id')
# volume augmentation
if self.use_aug:
max_amp = float(torch.max(torch.abs(audio))) + 1e-5
max_shift = min(1, np.log10(1/max_amp))
log10_vol_shift = random.uniform(-1, max_shift)
audio_aug = audio * (10 ** log10_vol_shift)
volume_frames_aug = volume_frames * (10 ** log10_vol_shift)
else:
audio_aug = audio
volume_frames_aug = volume_frames
return dict(audio=audio_aug, f0=f0_frames, volume=volume_frames_aug, units=units, spk_id=spk_id, name=name)
def __len__(self):
return len(self.paths)