ddsp-demo / DDSP-SVC /ddsp /vocoder.py
pdjdev's picture
add ddsp-svc
85a7d2c
raw
history blame
26.8 kB
import os
import numpy as np
import yaml
import torch
import torch.nn.functional as F
import pyworld as pw
import parselmouth
import torchcrepe
import resampy
from transformers import HubertModel, Wav2Vec2FeatureExtractor
from fairseq import checkpoint_utils
from encoder.hubert.model import HubertSoft
from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present
from torchaudio.transforms import Resample
from .unit2control import Unit2Control
from .core import frequency_filter, upsample, remove_above_fmax, MaskedAvgPool1d, MedianPool1d
import time
CREPE_RESAMPLE_KERNEL = {}
class F0_Extractor:
def __init__(self, f0_extractor, sample_rate = 44100, hop_size = 512, f0_min = 65, f0_max = 800):
self.f0_extractor = f0_extractor
self.sample_rate = sample_rate
self.hop_size = hop_size
self.f0_min = f0_min
self.f0_max = f0_max
if f0_extractor == 'crepe':
key_str = str(sample_rate)
if key_str not in CREPE_RESAMPLE_KERNEL:
CREPE_RESAMPLE_KERNEL[key_str] = Resample(sample_rate, 16000, lowpass_filter_width = 128)
self.resample_kernel = CREPE_RESAMPLE_KERNEL[key_str]
def extract(self, audio, uv_interp = False, device = None, silence_front = 0): # audio: 1d numpy array
# extractor start time
n_frames = int(len(audio) // self.hop_size) + 1
start_frame = int(silence_front * self.sample_rate / self.hop_size)
real_silence_front = start_frame * self.hop_size / self.sample_rate
audio = audio[int(np.round(real_silence_front * self.sample_rate)) : ]
# extract f0 using parselmouth
if self.f0_extractor == 'parselmouth':
f0 = parselmouth.Sound(audio, self.sample_rate).to_pitch_ac(
time_step = self.hop_size / self.sample_rate,
voicing_threshold = 0.6,
pitch_floor = self.f0_min,
pitch_ceiling = self.f0_max).selected_array['frequency']
pad_size = start_frame + (int(len(audio) // self.hop_size) - len(f0) + 1) // 2
f0 = np.pad(f0,(pad_size, n_frames - len(f0) - pad_size))
# extract f0 using dio
elif self.f0_extractor == 'dio':
_f0, t = pw.dio(
audio.astype('double'),
self.sample_rate,
f0_floor = self.f0_min,
f0_ceil = self.f0_max,
channels_in_octave=2,
frame_period = (1000 * self.hop_size / self.sample_rate))
f0 = pw.stonemask(audio.astype('double'), _f0, t, self.sample_rate)
f0 = np.pad(f0.astype('float'), (start_frame, n_frames - len(f0) - start_frame))
# extract f0 using harvest
elif self.f0_extractor == 'harvest':
f0, _ = pw.harvest(
audio.astype('double'),
self.sample_rate,
f0_floor = self.f0_min,
f0_ceil = self.f0_max,
frame_period = (1000 * self.hop_size / self.sample_rate))
f0 = np.pad(f0.astype('float'), (start_frame, n_frames - len(f0) - start_frame))
# extract f0 using crepe
elif self.f0_extractor == 'crepe':
if device is None:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
resample_kernel = self.resample_kernel.to(device)
wav16k_torch = resample_kernel(torch.FloatTensor(audio).unsqueeze(0).to(device))
f0, pd = torchcrepe.predict(wav16k_torch, 16000, 80, self.f0_min, self.f0_max, pad=True, model='full', batch_size=512, device=device, return_periodicity=True)
pd = MedianPool1d(pd, 4)
f0 = torchcrepe.threshold.At(0.05)(f0, pd)
f0 = MaskedAvgPool1d(f0, 4)
f0 = f0.squeeze(0).cpu().numpy()
f0 = np.array([f0[int(min(int(np.round(n * self.hop_size / self.sample_rate / 0.005)), len(f0) - 1))] for n in range(n_frames - start_frame)])
f0 = np.pad(f0, (start_frame, 0))
else:
raise ValueError(f" [x] Unknown f0 extractor: {f0_extractor}")
# interpolate the unvoiced f0
if uv_interp:
uv = f0 == 0
if len(f0[~uv]) > 0:
f0[uv] = np.interp(np.where(uv)[0], np.where(~uv)[0], f0[~uv])
f0[f0 < self.f0_min] = self.f0_min
return f0
class Volume_Extractor:
def __init__(self, hop_size = 512):
self.hop_size = hop_size
def extract(self, audio): # audio: 1d numpy array
n_frames = int(len(audio) // self.hop_size) + 1
audio2 = audio ** 2
audio2 = np.pad(audio2, (int(self.hop_size // 2), int((self.hop_size + 1) // 2)), mode = 'reflect')
volume = np.array([np.mean(audio2[int(n * self.hop_size) : int((n + 1) * self.hop_size)]) for n in range(n_frames)])
volume = np.sqrt(volume)
return volume
class Units_Encoder:
def __init__(self, encoder, encoder_ckpt, encoder_sample_rate = 16000, encoder_hop_size = 320, device = None,
cnhubertsoft_gate=10):
if device is None:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.device = device
is_loaded_encoder = False
if encoder == 'hubertsoft':
self.model = Audio2HubertSoft(encoder_ckpt).to(device)
is_loaded_encoder = True
if encoder == 'hubertbase':
self.model = Audio2HubertBase(encoder_ckpt, device=device)
is_loaded_encoder = True
if encoder == 'hubertbase768':
self.model = Audio2HubertBase768(encoder_ckpt, device=device)
is_loaded_encoder = True
if encoder == 'contentvec':
self.model = Audio2ContentVec(encoder_ckpt, device=device)
is_loaded_encoder = True
if encoder == 'contentvec768':
self.model = Audio2ContentVec768(encoder_ckpt, device=device)
is_loaded_encoder = True
if encoder == 'contentvec768l12':
self.model = Audio2ContentVec768L12(encoder_ckpt, device=device)
is_loaded_encoder = True
if encoder == 'cnhubertsoftfish':
self.model = CNHubertSoftFish(encoder_ckpt, device=device, gate_size=cnhubertsoft_gate)
is_loaded_encoder = True
if not is_loaded_encoder:
raise ValueError(f" [x] Unknown units encoder: {encoder}")
self.resample_kernel = {}
self.encoder_sample_rate = encoder_sample_rate
self.encoder_hop_size = encoder_hop_size
def encode(self,
audio, # B, T
sample_rate,
hop_size):
# resample
if sample_rate == self.encoder_sample_rate:
audio_res = audio
else:
key_str = str(sample_rate)
if key_str not in self.resample_kernel:
self.resample_kernel[key_str] = Resample(sample_rate, self.encoder_sample_rate, lowpass_filter_width = 128).to(self.device)
audio_res = self.resample_kernel[key_str](audio)
# encode
if audio_res.size(-1) < self.encoder_hop_size:
audio_res = torch.nn.functional.pad(audio, (0, self.encoder_hop_size - audio_res.size(-1)))
units = self.model(audio_res)
# alignment
n_frames = audio.size(-1) // hop_size + 1
ratio = (hop_size / sample_rate) / (self.encoder_hop_size / self.encoder_sample_rate)
index = torch.clamp(torch.round(ratio * torch.arange(n_frames).to(self.device)).long(), max = units.size(1) - 1)
units_aligned = torch.gather(units, 1, index.unsqueeze(0).unsqueeze(-1).repeat([1, 1, units.size(-1)]))
return units_aligned
class Audio2HubertSoft(torch.nn.Module):
def __init__(self, path, h_sample_rate = 16000, h_hop_size = 320):
super().__init__()
print(' [Encoder Model] HuBERT Soft')
self.hubert = HubertSoft()
print(' [Loading] ' + path)
checkpoint = torch.load(path)
consume_prefix_in_state_dict_if_present(checkpoint, "module.")
self.hubert.load_state_dict(checkpoint)
self.hubert.eval()
def forward(self,
audio): # B, T
with torch.inference_mode():
units = self.hubert.units(audio.unsqueeze(1))
return units
class Audio2ContentVec():
def __init__(self, path, h_sample_rate=16000, h_hop_size=320, device='cpu'):
self.device = device
print(' [Encoder Model] Content Vec')
print(' [Loading] ' + path)
self.models, self.saved_cfg, self.task = checkpoint_utils.load_model_ensemble_and_task([path], suffix="", )
self.hubert = self.models[0]
self.hubert = self.hubert.to(self.device)
self.hubert.eval()
def __call__(self,
audio): # B, T
# wav_tensor = torch.from_numpy(audio).to(self.device)
wav_tensor = audio
feats = wav_tensor.view(1, -1)
padding_mask = torch.BoolTensor(feats.shape).fill_(False)
inputs = {
"source": feats.to(wav_tensor.device),
"padding_mask": padding_mask.to(wav_tensor.device),
"output_layer": 9, # layer 9
}
with torch.no_grad():
logits = self.hubert.extract_features(**inputs)
feats = self.hubert.final_proj(logits[0])
units = feats # .transpose(2, 1)
return units
class Audio2ContentVec768():
def __init__(self, path, h_sample_rate=16000, h_hop_size=320, device='cpu'):
self.device = device
print(' [Encoder Model] Content Vec')
print(' [Loading] ' + path)
self.models, self.saved_cfg, self.task = checkpoint_utils.load_model_ensemble_and_task([path], suffix="", )
self.hubert = self.models[0]
self.hubert = self.hubert.to(self.device)
self.hubert.eval()
def __call__(self,
audio): # B, T
# wav_tensor = torch.from_numpy(audio).to(self.device)
wav_tensor = audio
feats = wav_tensor.view(1, -1)
padding_mask = torch.BoolTensor(feats.shape).fill_(False)
inputs = {
"source": feats.to(wav_tensor.device),
"padding_mask": padding_mask.to(wav_tensor.device),
"output_layer": 9, # layer 9
}
with torch.no_grad():
logits = self.hubert.extract_features(**inputs)
feats = logits[0]
units = feats # .transpose(2, 1)
return units
class Audio2ContentVec768L12():
def __init__(self, path, h_sample_rate=16000, h_hop_size=320, device='cpu'):
self.device = device
print(' [Encoder Model] Content Vec')
print(' [Loading] ' + path)
self.models, self.saved_cfg, self.task = checkpoint_utils.load_model_ensemble_and_task([path], suffix="", )
self.hubert = self.models[0]
self.hubert = self.hubert.to(self.device)
self.hubert.eval()
def __call__(self,
audio): # B, T
# wav_tensor = torch.from_numpy(audio).to(self.device)
wav_tensor = audio
feats = wav_tensor.view(1, -1)
padding_mask = torch.BoolTensor(feats.shape).fill_(False)
inputs = {
"source": feats.to(wav_tensor.device),
"padding_mask": padding_mask.to(wav_tensor.device),
"output_layer": 12, # layer 12
}
with torch.no_grad():
logits = self.hubert.extract_features(**inputs)
feats = logits[0]
units = feats # .transpose(2, 1)
return units
class CNHubertSoftFish(torch.nn.Module):
def __init__(self, path, h_sample_rate=16000, h_hop_size=320, device='cpu', gate_size=10):
super().__init__()
self.device = device
self.gate_size = gate_size
self.feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
"./pretrain/TencentGameMate/chinese-hubert-base")
self.model = HubertModel.from_pretrained("./pretrain/TencentGameMate/chinese-hubert-base")
self.proj = torch.nn.Sequential(torch.nn.Dropout(0.1), torch.nn.Linear(768, 256))
# self.label_embedding = nn.Embedding(128, 256)
state_dict = torch.load(path, map_location=device)
self.load_state_dict(state_dict)
@torch.no_grad()
def forward(self, audio):
input_values = self.feature_extractor(
audio, sampling_rate=16000, return_tensors="pt"
).input_values
input_values = input_values.to(self.model.device)
return self._forward(input_values[0])
@torch.no_grad()
def _forward(self, input_values):
features = self.model(input_values)
features = self.proj(features.last_hidden_state)
# Top-k gating
topk, indices = torch.topk(features, self.gate_size, dim=2)
features = torch.zeros_like(features).scatter(2, indices, topk)
features = features / features.sum(2, keepdim=True)
return features.to(self.device) # .transpose(1, 2)
class Audio2HubertBase():
def __init__(self, path, h_sample_rate=16000, h_hop_size=320, device='cpu'):
self.device = device
print(' [Encoder Model] HuBERT Base')
print(' [Loading] ' + path)
self.models, self.saved_cfg, self.task = checkpoint_utils.load_model_ensemble_and_task([path], suffix="", )
self.hubert = self.models[0]
self.hubert = self.hubert.to(self.device)
self.hubert = self.hubert.float()
self.hubert.eval()
def __call__(self,
audio): # B, T
with torch.no_grad():
padding_mask = torch.BoolTensor(audio.shape).fill_(False)
inputs = {
"source": audio.to(self.device),
"padding_mask": padding_mask.to(self.device),
"output_layer": 9, # layer 9
}
logits = self.hubert.extract_features(**inputs)
units = self.hubert.final_proj(logits[0])
return units
class Audio2HubertBase768():
def __init__(self, path, h_sample_rate=16000, h_hop_size=320, device='cpu'):
self.device = device
print(' [Encoder Model] HuBERT Base')
print(' [Loading] ' + path)
self.models, self.saved_cfg, self.task = checkpoint_utils.load_model_ensemble_and_task([path], suffix="", )
self.hubert = self.models[0]
self.hubert = self.hubert.to(self.device)
self.hubert = self.hubert.float()
self.hubert.eval()
def __call__(self,
audio): # B, T
with torch.no_grad():
padding_mask = torch.BoolTensor(audio.shape).fill_(False)
inputs = {
"source": audio.to(self.device),
"padding_mask": padding_mask.to(self.device),
"output_layer": 9, # layer 9
}
logits = self.hubert.extract_features(**inputs)
units = logits[0]
return units
class DotDict(dict):
def __getattr__(*args):
val = dict.get(*args)
return DotDict(val) if type(val) is dict else val
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
def load_model(
model_path,
device='cpu'):
config_file = os.path.join(os.path.split(model_path)[0], 'config.yaml')
with open(config_file, "r") as config:
args = yaml.safe_load(config)
args = DotDict(args)
# load model
model = None
if args.model.type == 'Sins':
model = Sins(
sampling_rate=args.data.sampling_rate,
block_size=args.data.block_size,
n_harmonics=args.model.n_harmonics,
n_mag_allpass=args.model.n_mag_allpass,
n_mag_noise=args.model.n_mag_noise,
n_unit=args.data.encoder_out_channels,
n_spk=args.model.n_spk)
elif args.model.type == 'CombSub':
model = CombSub(
sampling_rate=args.data.sampling_rate,
block_size=args.data.block_size,
n_mag_allpass=args.model.n_mag_allpass,
n_mag_harmonic=args.model.n_mag_harmonic,
n_mag_noise=args.model.n_mag_noise,
n_unit=args.data.encoder_out_channels,
n_spk=args.model.n_spk)
elif args.model.type == 'CombSubFast':
model = CombSubFast(
sampling_rate=args.data.sampling_rate,
block_size=args.data.block_size,
n_unit=args.data.encoder_out_channels,
n_spk=args.model.n_spk)
else:
raise ValueError(f" [x] Unknown Model: {args.model.type}")
print(' [Loading] ' + model_path)
ckpt = torch.load(model_path, map_location=torch.device(device))
model.to(device)
model.load_state_dict(ckpt['model'])
model.eval()
return model, args
class Sins(torch.nn.Module):
def __init__(self,
sampling_rate,
block_size,
n_harmonics,
n_mag_allpass,
n_mag_noise,
n_unit=256,
n_spk=1):
super().__init__()
print(' [DDSP Model] Sinusoids Additive Synthesiser')
# params
self.register_buffer("sampling_rate", torch.tensor(sampling_rate))
self.register_buffer("block_size", torch.tensor(block_size))
# Unit2Control
split_map = {
'amplitudes': n_harmonics,
'group_delay': n_mag_allpass,
'noise_magnitude': n_mag_noise,
}
self.unit2ctrl = Unit2Control(n_unit, n_spk, split_map)
def forward(self, units_frames, f0_frames, volume_frames, spk_id=None, spk_mix_dict=None, initial_phase=None, infer=True, max_upsample_dim=32):
'''
units_frames: B x n_frames x n_unit
f0_frames: B x n_frames x 1
volume_frames: B x n_frames x 1
spk_id: B x 1
'''
# exciter phase
f0 = upsample(f0_frames, self.block_size)
if infer:
x = torch.cumsum(f0.double() / self.sampling_rate, axis=1)
else:
x = torch.cumsum(f0 / self.sampling_rate, axis=1)
if initial_phase is not None:
x += initial_phase.to(x) / 2 / np.pi
x = x - torch.round(x)
x = x.to(f0)
phase = 2 * np.pi * x
phase_frames = phase[:, ::self.block_size, :]
# parameter prediction
ctrls = self.unit2ctrl(units_frames, f0_frames, phase_frames, volume_frames, spk_id=spk_id, spk_mix_dict=spk_mix_dict)
amplitudes_frames = torch.exp(ctrls['amplitudes'])/ 128
group_delay = np.pi * torch.tanh(ctrls['group_delay'])
noise_param = torch.exp(ctrls['noise_magnitude']) / 128
# sinusoids exciter signal
amplitudes_frames = remove_above_fmax(amplitudes_frames, f0_frames, self.sampling_rate / 2, level_start = 1)
n_harmonic = amplitudes_frames.shape[-1]
level_harmonic = torch.arange(1, n_harmonic + 1).to(phase)
sinusoids = 0.
for n in range(( n_harmonic - 1) // max_upsample_dim + 1):
start = n * max_upsample_dim
end = (n + 1) * max_upsample_dim
phases = phase * level_harmonic[start:end]
amplitudes = upsample(amplitudes_frames[:,:,start:end], self.block_size)
sinusoids += (torch.sin(phases) * amplitudes).sum(-1)
# harmonic part filter (apply group-delay)
harmonic = frequency_filter(
sinusoids,
torch.exp(1.j * torch.cumsum(group_delay, axis = -1)),
hann_window = False)
# noise part filter
noise = torch.rand_like(harmonic) * 2 - 1
noise = frequency_filter(
noise,
torch.complex(noise_param, torch.zeros_like(noise_param)),
hann_window = True)
signal = harmonic + noise
return signal, phase, (harmonic, noise) #, (noise_param, noise_param)
class CombSubFast(torch.nn.Module):
def __init__(self,
sampling_rate,
block_size,
n_unit=256,
n_spk=1):
super().__init__()
print(' [DDSP Model] Combtooth Subtractive Synthesiser')
# params
self.register_buffer("sampling_rate", torch.tensor(sampling_rate))
self.register_buffer("block_size", torch.tensor(block_size))
self.register_buffer("window", torch.sqrt(torch.hann_window(2 * block_size)))
#Unit2Control
split_map = {
'harmonic_magnitude': block_size + 1,
'harmonic_phase': block_size + 1,
'noise_magnitude': block_size + 1
}
self.unit2ctrl = Unit2Control(n_unit, n_spk, split_map)
def forward(self, units_frames, f0_frames, volume_frames, spk_id=None, spk_mix_dict=None, initial_phase=None, infer=True, **kwargs):
'''
units_frames: B x n_frames x n_unit
f0_frames: B x n_frames x 1
volume_frames: B x n_frames x 1
spk_id: B x 1
'''
# exciter phase
f0 = upsample(f0_frames, self.block_size)
if infer:
x = torch.cumsum(f0.double() / self.sampling_rate, axis=1)
else:
x = torch.cumsum(f0 / self.sampling_rate, axis=1)
if initial_phase is not None:
x += initial_phase.to(x) / 2 / np.pi
x = x - torch.round(x)
x = x.to(f0)
phase_frames = 2 * np.pi * x[:, ::self.block_size, :]
# parameter prediction
ctrls = self.unit2ctrl(units_frames, f0_frames, phase_frames, volume_frames, spk_id=spk_id, spk_mix_dict=spk_mix_dict)
src_filter = torch.exp(ctrls['harmonic_magnitude'] + 1.j * np.pi * ctrls['harmonic_phase'])
src_filter = torch.cat((src_filter, src_filter[:,-1:,:]), 1)
noise_filter= torch.exp(ctrls['noise_magnitude']) / 128
noise_filter = torch.cat((noise_filter, noise_filter[:,-1:,:]), 1)
# combtooth exciter signal
combtooth = torch.sinc(self.sampling_rate * x / (f0 + 1e-3))
combtooth = combtooth.squeeze(-1)
combtooth_frames = F.pad(combtooth, (self.block_size, self.block_size)).unfold(1, 2 * self.block_size, self.block_size)
combtooth_frames = combtooth_frames * self.window
combtooth_fft = torch.fft.rfft(combtooth_frames, 2 * self.block_size)
# noise exciter signal
noise = torch.rand_like(combtooth) * 2 - 1
noise_frames = F.pad(noise, (self.block_size, self.block_size)).unfold(1, 2 * self.block_size, self.block_size)
noise_frames = noise_frames * self.window
noise_fft = torch.fft.rfft(noise_frames, 2 * self.block_size)
# apply the filters
signal_fft = combtooth_fft * src_filter + noise_fft * noise_filter
# take the ifft to resynthesize audio.
signal_frames_out = torch.fft.irfft(signal_fft, 2 * self.block_size) * self.window
# overlap add
fold = torch.nn.Fold(output_size=(1, (signal_frames_out.size(1) + 1) * self.block_size), kernel_size=(1, 2 * self.block_size), stride=(1, self.block_size))
signal = fold(signal_frames_out.transpose(1, 2))[:, 0, 0, self.block_size : -self.block_size]
return signal, phase_frames, (signal, signal)
class CombSub(torch.nn.Module):
def __init__(self,
sampling_rate,
block_size,
n_mag_allpass,
n_mag_harmonic,
n_mag_noise,
n_unit=256,
n_spk=1):
super().__init__()
print(' [DDSP Model] Combtooth Subtractive Synthesiser (Old Version)')
# params
self.register_buffer("sampling_rate", torch.tensor(sampling_rate))
self.register_buffer("block_size", torch.tensor(block_size))
#Unit2Control
split_map = {
'group_delay': n_mag_allpass,
'harmonic_magnitude': n_mag_harmonic,
'noise_magnitude': n_mag_noise
}
self.unit2ctrl = Unit2Control(n_unit, n_spk, split_map)
def forward(self, units_frames, f0_frames, volume_frames, spk_id=None, spk_mix_dict=None, initial_phase=None, infer=True, **kwargs):
'''
units_frames: B x n_frames x n_unit
f0_frames: B x n_frames x 1
volume_frames: B x n_frames x 1
spk_id: B x 1
'''
# exciter phase
f0 = upsample(f0_frames, self.block_size)
if infer:
x = torch.cumsum(f0.double() / self.sampling_rate, axis=1)
else:
x = torch.cumsum(f0 / self.sampling_rate, axis=1)
if initial_phase is not None:
x += initial_phase.to(x) / 2 / np.pi
x = x - torch.round(x)
x = x.to(f0)
phase_frames = 2 * np.pi * x[:, ::self.block_size, :]
# parameter prediction
ctrls = self.unit2ctrl(units_frames, f0_frames, phase_frames, volume_frames, spk_id=spk_id, spk_mix_dict=spk_mix_dict)
group_delay = np.pi * torch.tanh(ctrls['group_delay'])
src_param = torch.exp(ctrls['harmonic_magnitude'])
noise_param = torch.exp(ctrls['noise_magnitude']) / 128
# combtooth exciter signal
combtooth = torch.sinc(self.sampling_rate * x / (f0 + 1e-3))
combtooth = combtooth.squeeze(-1)
# harmonic part filter (using dynamic-windowed LTV-FIR, with group-delay prediction)
harmonic = frequency_filter(
combtooth,
torch.exp(1.j * torch.cumsum(group_delay, axis = -1)),
hann_window = False)
harmonic = frequency_filter(
harmonic,
torch.complex(src_param, torch.zeros_like(src_param)),
hann_window = True,
half_width_frames = 1.5 * self.sampling_rate / (f0_frames + 1e-3))
# noise part filter (using constant-windowed LTV-FIR, without group-delay)
noise = torch.rand_like(harmonic) * 2 - 1
noise = frequency_filter(
noise,
torch.complex(noise_param, torch.zeros_like(noise_param)),
hann_window = True)
signal = harmonic + noise
return signal, phase_frames, (harmonic, noise)