ddsp-demo / DDSP-SVC /preprocess.py
pdjdev's picture
add ddsp-svc
85a7d2c
raw
history blame
7.61 kB
import os
import numpy as np
import random
import librosa
import torch
import pyworld as pw
import parselmouth
import argparse
import shutil
from logger import utils
from tqdm import tqdm
from ddsp.vocoder import F0_Extractor, Volume_Extractor, Units_Encoder
from diffusion.vocoder import Vocoder
from logger.utils import traverse_dir
import concurrent.futures
def parse_args(args=None, namespace=None):
"""Parse command-line arguments."""
parser = argparse.ArgumentParser()
parser.add_argument(
"-c",
"--config",
type=str,
required=True,
help="path to the config file")
parser.add_argument(
"-d",
"--device",
type=str,
default=None,
required=False,
help="cpu or cuda, auto if not set")
return parser.parse_args(args=args, namespace=namespace)
def preprocess(path, f0_extractor, volume_extractor, mel_extractor, units_encoder, sample_rate, hop_size, device = 'cuda', use_pitch_aug = False):
path_srcdir = os.path.join(path, 'audio')
path_unitsdir = os.path.join(path, 'units')
path_f0dir = os.path.join(path, 'f0')
path_volumedir = os.path.join(path, 'volume')
path_augvoldir = os.path.join(path, 'aug_vol')
path_meldir = os.path.join(path, 'mel')
path_augmeldir = os.path.join(path, 'aug_mel')
path_skipdir = os.path.join(path, 'skip')
# list files
filelist = traverse_dir(
path_srcdir,
extension='wav',
is_pure=True,
is_sort=True,
is_ext=True)
# pitch augmentation dictionary
pitch_aug_dict = {}
# run
def process(file):
ext = file.split('.')[-1]
binfile = file[:-(len(ext)+1)]+'.npy'
path_srcfile = os.path.join(path_srcdir, file)
path_unitsfile = os.path.join(path_unitsdir, binfile)
path_f0file = os.path.join(path_f0dir, binfile)
path_volumefile = os.path.join(path_volumedir, binfile)
path_augvolfile = os.path.join(path_augvoldir, binfile)
path_melfile = os.path.join(path_meldir, binfile)
path_augmelfile = os.path.join(path_augmeldir, binfile)
path_skipfile = os.path.join(path_skipdir, file)
# load audio
audio, _ = librosa.load(path_srcfile, sr=sample_rate)
if len(audio.shape) > 1:
audio = librosa.to_mono(audio)
audio_t = torch.from_numpy(audio).float().to(device)
audio_t = audio_t.unsqueeze(0)
# extract volume
volume = volume_extractor.extract(audio)
# extract mel and volume augmentaion
if mel_extractor is not None:
mel_t = mel_extractor.extract(audio_t, sample_rate)
mel = mel_t.squeeze().to('cpu').numpy()
max_amp = float(torch.max(torch.abs(audio_t))) + 1e-5
max_shift = min(1, np.log10(1/max_amp))
log10_vol_shift = random.uniform(-1, max_shift)
if use_pitch_aug:
keyshift = random.uniform(-5, 5)
else:
keyshift = 0
aug_mel_t = mel_extractor.extract(audio_t * (10 ** log10_vol_shift), sample_rate, keyshift = keyshift)
aug_mel = aug_mel_t.squeeze().to('cpu').numpy()
aug_vol = volume_extractor.extract(audio * (10 ** log10_vol_shift))
# units encode
units_t = units_encoder.encode(audio_t, sample_rate, hop_size)
units = units_t.squeeze().to('cpu').numpy()
# extract f0
f0 = f0_extractor.extract(audio, uv_interp = False)
uv = f0 == 0
if len(f0[~uv]) > 0:
# interpolate the unvoiced f0
f0[uv] = np.interp(np.where(uv)[0], np.where(~uv)[0], f0[~uv])
# save npy
os.makedirs(os.path.dirname(path_unitsfile), exist_ok=True)
np.save(path_unitsfile, units)
os.makedirs(os.path.dirname(path_f0file), exist_ok=True)
np.save(path_f0file, f0)
os.makedirs(os.path.dirname(path_volumefile), exist_ok=True)
np.save(path_volumefile, volume)
if mel_extractor is not None:
pitch_aug_dict[file[:-(len(ext)+1)]] = keyshift
os.makedirs(os.path.dirname(path_melfile), exist_ok=True)
np.save(path_melfile, mel)
os.makedirs(os.path.dirname(path_augmelfile), exist_ok=True)
np.save(path_augmelfile, aug_mel)
os.makedirs(os.path.dirname(path_augvolfile), exist_ok=True)
np.save(path_augvolfile, aug_vol)
else:
print('\n[Error] F0 extraction failed: ' + path_srcfile)
os.makedirs(os.path.dirname(path_skipfile), exist_ok=True)
shutil.move(path_srcfile, os.path.dirname(path_skipfile))
print('This file has been moved to ' + path_skipfile)
print('Preprocess the audio clips in :', path_srcdir)
# single process
for file in tqdm(filelist, total=len(filelist)):
process(file)
if mel_extractor is not None:
path_pitchaugdict = os.path.join(path, 'pitch_aug_dict.npy')
np.save(path_pitchaugdict, pitch_aug_dict)
# multi-process (have bugs)
'''
with concurrent.futures.ProcessPoolExecutor(max_workers=2) as executor:
list(tqdm(executor.map(process, filelist), total=len(filelist)))
'''
if __name__ == '__main__':
# parse commands
cmd = parse_args()
device = cmd.device
if device is None:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# load config
args = utils.load_config(cmd.config)
sample_rate = args.data.sampling_rate
hop_size = args.data.block_size
# initialize f0 extractor
f0_extractor = F0_Extractor(
args.data.f0_extractor,
args.data.sampling_rate,
args.data.block_size,
args.data.f0_min,
args.data.f0_max)
# initialize volume extractor
volume_extractor = Volume_Extractor(args.data.block_size)
# initialize mel extractor
mel_extractor = None
use_pitch_aug = False
if args.model.type == 'Diffusion':
mel_extractor = Vocoder(args.vocoder.type, args.vocoder.ckpt, device = device)
if mel_extractor.vocoder_sample_rate != sample_rate or mel_extractor.vocoder_hop_size != hop_size:
mel_extractor = None
print('Unmatch vocoder parameters, mel extraction is ignored!')
elif args.model.use_pitch_aug:
use_pitch_aug = True
# initialize units encoder
if args.data.encoder == 'cnhubertsoftfish':
cnhubertsoft_gate = args.data.cnhubertsoft_gate
else:
cnhubertsoft_gate = 10
units_encoder = Units_Encoder(
args.data.encoder,
args.data.encoder_ckpt,
args.data.encoder_sample_rate,
args.data.encoder_hop_size,
cnhubertsoft_gate=cnhubertsoft_gate,
device = device)
# preprocess training set
preprocess(args.data.train_path, f0_extractor, volume_extractor, mel_extractor, units_encoder, sample_rate, hop_size, device = device, use_pitch_aug = use_pitch_aug)
# preprocess validation set
preprocess(args.data.valid_path, f0_extractor, volume_extractor, mel_extractor, units_encoder, sample_rate, hop_size, device = device, use_pitch_aug = False)