|
from collections import deque |
|
from functools import partial |
|
from inspect import isfunction |
|
import torch.nn.functional as F |
|
import librosa.sequence |
|
import numpy as np |
|
import torch |
|
from torch import nn |
|
from tqdm import tqdm |
|
|
|
|
|
def exists(x): |
|
return x is not None |
|
|
|
|
|
def default(val, d): |
|
if exists(val): |
|
return val |
|
return d() if isfunction(d) else d |
|
|
|
|
|
def extract(a, t, x_shape): |
|
b, *_ = t.shape |
|
out = a.gather(-1, t) |
|
return out.reshape(b, *((1,) * (len(x_shape) - 1))) |
|
|
|
|
|
def noise_like(shape, device, repeat=False): |
|
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1))) |
|
noise = lambda: torch.randn(shape, device=device) |
|
return repeat_noise() if repeat else noise() |
|
|
|
|
|
def linear_beta_schedule(timesteps, max_beta=0.02): |
|
""" |
|
linear schedule |
|
""" |
|
betas = np.linspace(1e-4, max_beta, timesteps) |
|
return betas |
|
|
|
|
|
def cosine_beta_schedule(timesteps, s=0.008): |
|
""" |
|
cosine schedule |
|
as proposed in https://openreview.net/forum?id=-NEXDKk8gZ |
|
""" |
|
steps = timesteps + 1 |
|
x = np.linspace(0, steps, steps) |
|
alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2 |
|
alphas_cumprod = alphas_cumprod / alphas_cumprod[0] |
|
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1]) |
|
return np.clip(betas, a_min=0, a_max=0.999) |
|
|
|
|
|
beta_schedule = { |
|
"cosine": cosine_beta_schedule, |
|
"linear": linear_beta_schedule, |
|
} |
|
|
|
|
|
class GaussianDiffusion(nn.Module): |
|
def __init__(self, |
|
denoise_fn, |
|
out_dims=128, |
|
timesteps=1000, |
|
k_step=1000, |
|
max_beta=0.02, |
|
spec_min=-12, |
|
spec_max=2): |
|
super().__init__() |
|
self.denoise_fn = denoise_fn |
|
self.out_dims = out_dims |
|
betas = beta_schedule['linear'](timesteps, max_beta=max_beta) |
|
|
|
alphas = 1. - betas |
|
alphas_cumprod = np.cumprod(alphas, axis=0) |
|
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1]) |
|
|
|
timesteps, = betas.shape |
|
self.num_timesteps = int(timesteps) |
|
self.k_step = k_step |
|
|
|
self.noise_list = deque(maxlen=4) |
|
|
|
to_torch = partial(torch.tensor, dtype=torch.float32) |
|
|
|
self.register_buffer('betas', to_torch(betas)) |
|
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) |
|
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev)) |
|
|
|
|
|
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))) |
|
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod))) |
|
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod))) |
|
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod))) |
|
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1))) |
|
|
|
|
|
posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod) |
|
|
|
self.register_buffer('posterior_variance', to_torch(posterior_variance)) |
|
|
|
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20)))) |
|
self.register_buffer('posterior_mean_coef1', to_torch( |
|
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))) |
|
self.register_buffer('posterior_mean_coef2', to_torch( |
|
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod))) |
|
|
|
self.register_buffer('spec_min', torch.FloatTensor([spec_min])[None, None, :out_dims]) |
|
self.register_buffer('spec_max', torch.FloatTensor([spec_max])[None, None, :out_dims]) |
|
|
|
def q_mean_variance(self, x_start, t): |
|
mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start |
|
variance = extract(1. - self.alphas_cumprod, t, x_start.shape) |
|
log_variance = extract(self.log_one_minus_alphas_cumprod, t, x_start.shape) |
|
return mean, variance, log_variance |
|
|
|
def predict_start_from_noise(self, x_t, t, noise): |
|
return ( |
|
extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - |
|
extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise |
|
) |
|
|
|
def q_posterior(self, x_start, x_t, t): |
|
posterior_mean = ( |
|
extract(self.posterior_mean_coef1, t, x_t.shape) * x_start + |
|
extract(self.posterior_mean_coef2, t, x_t.shape) * x_t |
|
) |
|
posterior_variance = extract(self.posterior_variance, t, x_t.shape) |
|
posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape) |
|
return posterior_mean, posterior_variance, posterior_log_variance_clipped |
|
|
|
def p_mean_variance(self, x, t, cond): |
|
noise_pred = self.denoise_fn(x, t, cond=cond) |
|
x_recon = self.predict_start_from_noise(x, t=t, noise=noise_pred) |
|
|
|
x_recon.clamp_(-1., 1.) |
|
|
|
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) |
|
return model_mean, posterior_variance, posterior_log_variance |
|
|
|
@torch.no_grad() |
|
def p_sample(self, x, t, cond, clip_denoised=True, repeat_noise=False): |
|
b, *_, device = *x.shape, x.device |
|
model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, cond=cond) |
|
noise = noise_like(x.shape, device, repeat_noise) |
|
|
|
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) |
|
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise |
|
|
|
@torch.no_grad() |
|
def p_sample_plms(self, x, t, interval, cond, clip_denoised=True, repeat_noise=False): |
|
""" |
|
Use the PLMS method from |
|
[Pseudo Numerical Methods for Diffusion Models on Manifolds](https://arxiv.org/abs/2202.09778). |
|
""" |
|
|
|
def get_x_pred(x, noise_t, t): |
|
a_t = extract(self.alphas_cumprod, t, x.shape) |
|
a_prev = extract(self.alphas_cumprod, torch.max(t - interval, torch.zeros_like(t)), x.shape) |
|
a_t_sq, a_prev_sq = a_t.sqrt(), a_prev.sqrt() |
|
|
|
x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x - 1 / ( |
|
a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t) |
|
x_pred = x + x_delta |
|
|
|
return x_pred |
|
|
|
noise_list = self.noise_list |
|
noise_pred = self.denoise_fn(x, t, cond=cond) |
|
|
|
if len(noise_list) == 0: |
|
x_pred = get_x_pred(x, noise_pred, t) |
|
noise_pred_prev = self.denoise_fn(x_pred, max(t - interval, 0), cond=cond) |
|
noise_pred_prime = (noise_pred + noise_pred_prev) / 2 |
|
elif len(noise_list) == 1: |
|
noise_pred_prime = (3 * noise_pred - noise_list[-1]) / 2 |
|
elif len(noise_list) == 2: |
|
noise_pred_prime = (23 * noise_pred - 16 * noise_list[-1] + 5 * noise_list[-2]) / 12 |
|
else: |
|
noise_pred_prime = (55 * noise_pred - 59 * noise_list[-1] + 37 * noise_list[-2] - 9 * noise_list[-3]) / 24 |
|
|
|
x_prev = get_x_pred(x, noise_pred_prime, t) |
|
noise_list.append(noise_pred) |
|
|
|
return x_prev |
|
|
|
def q_sample(self, x_start, t, noise=None): |
|
noise = default(noise, lambda: torch.randn_like(x_start)) |
|
return ( |
|
extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + |
|
extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise |
|
) |
|
|
|
def p_losses(self, x_start, t, cond, noise=None, loss_type='l2'): |
|
noise = default(noise, lambda: torch.randn_like(x_start)) |
|
|
|
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) |
|
x_recon = self.denoise_fn(x_noisy, t, cond) |
|
|
|
if loss_type == 'l1': |
|
loss = (noise - x_recon).abs().mean() |
|
elif loss_type == 'l2': |
|
loss = F.mse_loss(noise, x_recon) |
|
else: |
|
raise NotImplementedError() |
|
|
|
return loss |
|
|
|
def forward(self, |
|
condition, |
|
gt_spec=None, |
|
infer=True, |
|
infer_speedup=10, |
|
method='dpm-solver', |
|
k_step=300, |
|
use_tqdm=True): |
|
""" |
|
conditioning diffusion, use fastspeech2 encoder output as the condition |
|
""" |
|
cond = condition.transpose(1, 2) |
|
b, device = condition.shape[0], condition.device |
|
|
|
if not infer: |
|
spec = self.norm_spec(gt_spec) |
|
t = torch.randint(0, self.k_step, (b,), device=device).long() |
|
norm_spec = spec.transpose(1, 2)[:, None, :, :] |
|
return self.p_losses(norm_spec, t, cond=cond) |
|
else: |
|
shape = (cond.shape[0], 1, self.out_dims, cond.shape[2]) |
|
|
|
if gt_spec is None: |
|
t = self.k_step |
|
x = torch.randn(shape, device=device) |
|
else: |
|
t = k_step |
|
norm_spec = self.norm_spec(gt_spec) |
|
norm_spec = norm_spec.transpose(1, 2)[:, None, :, :] |
|
x = self.q_sample(x_start=norm_spec, t=torch.tensor([t - 1], device=device).long()) |
|
|
|
if method is not None and infer_speedup > 1: |
|
if method == 'dpm-solver': |
|
from .dpm_solver_pytorch import NoiseScheduleVP, model_wrapper, DPM_Solver |
|
|
|
noise_schedule = NoiseScheduleVP(schedule='discrete', betas=self.betas[:t]) |
|
|
|
|
|
|
|
|
|
def my_wrapper(fn): |
|
def wrapped(x, t, **kwargs): |
|
ret = fn(x, t, **kwargs) |
|
if use_tqdm: |
|
self.bar.update(1) |
|
return ret |
|
|
|
return wrapped |
|
|
|
model_fn = model_wrapper( |
|
my_wrapper(self.denoise_fn), |
|
noise_schedule, |
|
model_type="noise", |
|
model_kwargs={"cond": cond} |
|
) |
|
|
|
|
|
|
|
|
|
|
|
dpm_solver = DPM_Solver(model_fn, noise_schedule) |
|
|
|
steps = t // infer_speedup |
|
if use_tqdm: |
|
self.bar = tqdm(desc="sample time step", total=steps) |
|
x = dpm_solver.sample( |
|
x, |
|
steps=steps, |
|
order=3, |
|
skip_type="time_uniform", |
|
method="singlestep", |
|
) |
|
if use_tqdm: |
|
self.bar.close() |
|
elif method == 'pndm': |
|
self.noise_list = deque(maxlen=4) |
|
if use_tqdm: |
|
for i in tqdm( |
|
reversed(range(0, t, infer_speedup)), desc='sample time step', |
|
total=t // infer_speedup, |
|
): |
|
x = self.p_sample_plms( |
|
x, torch.full((b,), i, device=device, dtype=torch.long), |
|
infer_speedup, cond=cond |
|
) |
|
else: |
|
for i in reversed(range(0, t, infer_speedup)): |
|
x = self.p_sample_plms( |
|
x, torch.full((b,), i, device=device, dtype=torch.long), |
|
infer_speedup, cond=cond |
|
) |
|
else: |
|
raise NotImplementedError(method) |
|
else: |
|
if use_tqdm: |
|
for i in tqdm(reversed(range(0, t)), desc='sample time step', total=t): |
|
x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond) |
|
else: |
|
for i in reversed(range(0, t)): |
|
x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond) |
|
x = x.squeeze(1).transpose(1, 2) |
|
return self.denorm_spec(x) |
|
|
|
def norm_spec(self, x): |
|
return (x - self.spec_min) / (self.spec_max - self.spec_min) * 2 - 1 |
|
|
|
def denorm_spec(self, x): |
|
return (x + 1) / 2 * (self.spec_max - self.spec_min) + self.spec_min |
|
|