|
import math |
|
from math import sqrt |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.nn import Mish |
|
|
|
|
|
class Conv1d(torch.nn.Conv1d): |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
nn.init.kaiming_normal_(self.weight) |
|
|
|
|
|
class SinusoidalPosEmb(nn.Module): |
|
def __init__(self, dim): |
|
super().__init__() |
|
self.dim = dim |
|
|
|
def forward(self, x): |
|
device = x.device |
|
half_dim = self.dim // 2 |
|
emb = math.log(10000) / (half_dim - 1) |
|
emb = torch.exp(torch.arange(half_dim, device=device) * -emb) |
|
emb = x[:, None] * emb[None, :] |
|
emb = torch.cat((emb.sin(), emb.cos()), dim=-1) |
|
return emb |
|
|
|
|
|
class ResidualBlock(nn.Module): |
|
def __init__(self, encoder_hidden, residual_channels, dilation): |
|
super().__init__() |
|
self.residual_channels = residual_channels |
|
self.dilated_conv = nn.Conv1d( |
|
residual_channels, |
|
2 * residual_channels, |
|
kernel_size=3, |
|
padding=dilation, |
|
dilation=dilation |
|
) |
|
self.diffusion_projection = nn.Linear(residual_channels, residual_channels) |
|
self.conditioner_projection = nn.Conv1d(encoder_hidden, 2 * residual_channels, 1) |
|
self.output_projection = nn.Conv1d(residual_channels, 2 * residual_channels, 1) |
|
|
|
def forward(self, x, conditioner, diffusion_step): |
|
diffusion_step = self.diffusion_projection(diffusion_step).unsqueeze(-1) |
|
conditioner = self.conditioner_projection(conditioner) |
|
y = x + diffusion_step |
|
|
|
y = self.dilated_conv(y) + conditioner |
|
|
|
|
|
gate, filter = torch.split(y, [self.residual_channels, self.residual_channels], dim=1) |
|
y = torch.sigmoid(gate) * torch.tanh(filter) |
|
|
|
y = self.output_projection(y) |
|
|
|
|
|
residual, skip = torch.split(y, [self.residual_channels, self.residual_channels], dim=1) |
|
return (x + residual) / math.sqrt(2.0), skip |
|
|
|
|
|
class WaveNet(nn.Module): |
|
def __init__(self, in_dims=128, n_layers=20, n_chans=384, n_hidden=256): |
|
super().__init__() |
|
self.input_projection = Conv1d(in_dims, n_chans, 1) |
|
self.diffusion_embedding = SinusoidalPosEmb(n_chans) |
|
self.mlp = nn.Sequential( |
|
nn.Linear(n_chans, n_chans * 4), |
|
Mish(), |
|
nn.Linear(n_chans * 4, n_chans) |
|
) |
|
self.residual_layers = nn.ModuleList([ |
|
ResidualBlock( |
|
encoder_hidden=n_hidden, |
|
residual_channels=n_chans, |
|
dilation=1 |
|
) |
|
for i in range(n_layers) |
|
]) |
|
self.skip_projection = Conv1d(n_chans, n_chans, 1) |
|
self.output_projection = Conv1d(n_chans, in_dims, 1) |
|
nn.init.zeros_(self.output_projection.weight) |
|
|
|
def forward(self, spec, diffusion_step, cond): |
|
""" |
|
:param spec: [B, 1, M, T] |
|
:param diffusion_step: [B, 1] |
|
:param cond: [B, M, T] |
|
:return: |
|
""" |
|
x = spec.squeeze(1) |
|
x = self.input_projection(x) |
|
|
|
x = F.relu(x) |
|
diffusion_step = self.diffusion_embedding(diffusion_step) |
|
diffusion_step = self.mlp(diffusion_step) |
|
skip = [] |
|
for layer in self.residual_layers: |
|
x, skip_connection = layer(x, cond, diffusion_step) |
|
skip.append(skip_connection) |
|
|
|
x = torch.sum(torch.stack(skip), dim=0) / sqrt(len(self.residual_layers)) |
|
x = self.skip_projection(x) |
|
x = F.relu(x) |
|
x = self.output_projection(x) |
|
return x[:, None, :, :] |
|
|