|
import numpy as np |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torchaudio |
|
from torch.nn import functional as F |
|
from .core import upsample |
|
|
|
class SSSLoss(nn.Module): |
|
""" |
|
Single-scale Spectral Loss. |
|
""" |
|
|
|
def __init__(self, n_fft=111, alpha=1.0, overlap=0, eps=1e-7): |
|
super().__init__() |
|
self.n_fft = n_fft |
|
self.alpha = alpha |
|
self.eps = eps |
|
self.hop_length = int(n_fft * (1 - overlap)) |
|
self.spec = torchaudio.transforms.Spectrogram(n_fft=self.n_fft, hop_length=self.hop_length, power=1, normalized=True, center=False) |
|
|
|
def forward(self, x_true, x_pred): |
|
S_true = self.spec(x_true) + self.eps |
|
S_pred = self.spec(x_pred) + self.eps |
|
|
|
converge_term = torch.mean(torch.linalg.norm(S_true - S_pred, dim = (1, 2)) / torch.linalg.norm(S_true + S_pred, dim = (1, 2))) |
|
|
|
log_term = F.l1_loss(S_true.log(), S_pred.log()) |
|
|
|
loss = converge_term + self.alpha * log_term |
|
return loss |
|
|
|
|
|
class RSSLoss(nn.Module): |
|
''' |
|
Random-scale Spectral Loss. |
|
''' |
|
|
|
def __init__(self, fft_min, fft_max, n_scale, alpha=1.0, overlap=0, eps=1e-7, device='cuda'): |
|
super().__init__() |
|
self.fft_min = fft_min |
|
self.fft_max = fft_max |
|
self.n_scale = n_scale |
|
self.lossdict = {} |
|
for n_fft in range(fft_min, fft_max): |
|
self.lossdict[n_fft] = SSSLoss(n_fft, alpha, overlap, eps).to(device) |
|
|
|
def forward(self, x_pred, x_true): |
|
value = 0. |
|
n_ffts = torch.randint(self.fft_min, self.fft_max, (self.n_scale,)) |
|
for n_fft in n_ffts: |
|
loss_func = self.lossdict[int(n_fft)] |
|
value += loss_func(x_true, x_pred) |
|
return value / self.n_scale |
|
|
|
|
|
|
|
|