''' author: wayn391@mastertones ''' import os import json import time import yaml import datetime import torch import matplotlib.pyplot as plt from . import utils from torch.utils.tensorboard import SummaryWriter class Saver(object): def __init__( self, args, initial_global_step=-1): self.expdir = args.env.expdir self.sample_rate = args.data.sampling_rate # cold start self.global_step = initial_global_step self.init_time = time.time() self.last_time = time.time() # makedirs os.makedirs(self.expdir, exist_ok=True) # path self.path_log_info = os.path.join(self.expdir, 'log_info.txt') # ckpt os.makedirs(self.expdir, exist_ok=True) # writer self.writer = SummaryWriter(os.path.join(self.expdir, 'logs')) # save config path_config = os.path.join(self.expdir, 'config.yaml') with open(path_config, "w") as out_config: yaml.dump(dict(args), out_config) def log_info(self, msg): '''log method''' if isinstance(msg, dict): msg_list = [] for k, v in msg.items(): tmp_str = '' if isinstance(v, int): tmp_str = '{}: {:,}'.format(k, v) else: tmp_str = '{}: {}'.format(k, v) msg_list.append(tmp_str) msg_str = '\n'.join(msg_list) else: msg_str = msg # dsplay print(msg_str) # save with open(self.path_log_info, 'a') as fp: fp.write(msg_str+'\n') def log_value(self, dict): for k, v in dict.items(): self.writer.add_scalar(k, v, self.global_step) def log_spec(self, name, spec, spec_out, vmin=-14, vmax=3.5): spec_cat = torch.cat([(spec_out - spec).abs() + vmin, spec, spec_out], -1) spec = spec_cat[0] if isinstance(spec, torch.Tensor): spec = spec.cpu().numpy() fig = plt.figure(figsize=(12, 9)) plt.pcolor(spec.T, vmin=vmin, vmax=vmax) plt.tight_layout() self.writer.add_figure(name, fig, self.global_step) def log_audio(self, dict): for k, v in dict.items(): self.writer.add_audio(k, v, global_step=self.global_step, sample_rate=self.sample_rate) def get_interval_time(self, update=True): cur_time = time.time() time_interval = cur_time - self.last_time if update: self.last_time = cur_time return time_interval def get_total_time(self, to_str=True): total_time = time.time() - self.init_time if to_str: total_time = str(datetime.timedelta( seconds=total_time))[:-5] return total_time def save_model( self, model, optimizer, name='model', postfix='', to_json=False): # path if postfix: postfix = '_' + postfix path_pt = os.path.join( self.expdir , name+postfix+'.pt') # check print(' [*] model checkpoint saved: {}'.format(path_pt)) # save torch.save({ 'global_step': self.global_step, 'model': model.state_dict(), 'optimizer': optimizer.state_dict()}, path_pt) # to json if to_json: path_json = os.path.join( self.expdir , name+'.json') utils.to_json(path_params, path_json) def delete_model(self, name='model', postfix=''): # path if postfix: postfix = '_' + postfix path_pt = os.path.join( self.expdir , name+postfix+'.pt') # delete if os.path.exists(path_pt): os.remove(path_pt) print(' [*] model checkpoint deleted: {}'.format(path_pt)) def global_step_increment(self): self.global_step += 1