import functools import os import shutil import sys import git import gradio as gr import numpy as np import torch as torch from PIL import Image from gradio_imageslider import ImageSlider from extrude import extrude_depth_3d def process( pipe, path_input, ensemble_size, denoise_steps, processing_res, path_out_16bit=None, path_out_fp32=None, path_out_vis=None, _input_3d_plane_near=None, _input_3d_plane_far=None, _input_3d_embossing=None, _input_3d_filter_size=None, _input_3d_frame_near=None, ): if path_out_vis is not None: return ( [path_out_16bit, path_out_vis], [path_out_16bit, path_out_fp32, path_out_vis], ) input_image = Image.open(path_input) pipe_out = pipe( input_image, ensemble_size=ensemble_size, denoising_steps=denoise_steps, processing_res=processing_res, batch_size=1 if processing_res == 0 else 0, show_progress_bar=True, ) depth_pred = pipe_out.depth_np depth_colored = pipe_out.depth_colored depth_16bit = (depth_pred * 65535.0).astype(np.uint16) path_output_dir = os.path.splitext(path_input)[0] + "_output" os.makedirs(path_output_dir, exist_ok=True) name_base = os.path.splitext(os.path.basename(path_input))[0] path_out_fp32 = os.path.join(path_output_dir, f"{name_base}_depth_fp32.npy") path_out_16bit = os.path.join(path_output_dir, f"{name_base}_depth_16bit.png") path_out_vis = os.path.join(path_output_dir, f"{name_base}_depth_colored.png") np.save(path_out_fp32, depth_pred) Image.fromarray(depth_16bit).save(path_out_16bit, mode="I;16") depth_colored.save(path_out_vis) return ( [path_out_16bit, path_out_vis], [path_out_16bit, path_out_fp32, path_out_vis], ) def process_3d( input_image, files, size_longest_px, size_longest_cm, filter_size, plane_near, plane_far, embossing, frame_thickness, frame_near, frame_far, ): if input_image is None or len(files) < 1: raise gr.Error("Please upload an image (or use examples) and compute depth first") if plane_near >= plane_far: raise gr.Error("NEAR plane must have a value smaller than the FAR plane") def _process_3d(size_longest_px, filter_size, vertex_colors, scene_lights, output_model_scale=None): image_rgb = input_image image_depth = files[0] image_rgb_basename, image_rgb_ext = os.path.splitext(image_rgb) image_depth_basename, image_depth_ext = os.path.splitext(image_depth) image_rgb_content = Image.open(image_rgb) image_rgb_w, image_rgb_h = image_rgb_content.width, image_rgb_content.height image_rgb_d = max(image_rgb_w, image_rgb_h) image_new_w = size_longest_px * image_rgb_w // image_rgb_d image_new_h = size_longest_px * image_rgb_h // image_rgb_d image_rgb_new = image_rgb_basename + f"_{size_longest_px}" + image_rgb_ext image_depth_new = image_depth_basename + f"_{size_longest_px}" + image_depth_ext image_rgb_content.resize((image_new_w, image_new_h), Image.LANCZOS).save( image_rgb_new ) Image.open(image_depth).resize((image_new_w, image_new_h), Image.LANCZOS).save( image_depth_new ) path_glb, path_stl = extrude_depth_3d( image_rgb_new, image_depth_new, output_model_scale=size_longest_cm * 10 if output_model_scale is None else output_model_scale, filter_size=filter_size, coef_near=plane_near, coef_far=plane_far, emboss=embossing / 100, f_thic=frame_thickness / 100, f_near=frame_near / 100, f_back=frame_far / 100, vertex_colors=vertex_colors, scene_lights=scene_lights, ) return path_glb, path_stl path_viewer_glb, _ = _process_3d(256, filter_size, vertex_colors=False, scene_lights=True, output_model_scale=1) path_files_glb, path_files_stl = _process_3d(size_longest_px, filter_size, vertex_colors=True, scene_lights=False) # sanitize 3d viewer glb path to keep babylon.js happy path_viewer_glb_sanitized = os.path.join(os.path.dirname(path_viewer_glb), "preview.glb") if path_viewer_glb_sanitized != path_viewer_glb: os.rename(path_viewer_glb, path_viewer_glb_sanitized) path_viewer_glb = path_viewer_glb_sanitized return path_viewer_glb, [path_files_glb, path_files_stl] def run_demo_server(pipe): process_pipe = functools.partial(process, pipe) os.environ["GRADIO_ALLOW_FLAGGING"] = "never" with gr.Blocks( analytics_enabled=False, title="Marigold Depth Estimation", css=""" #download { height: 118px; } .slider .inner { width: 5px; background: #FFF; } .viewport { aspect-ratio: 4/3; } """, ) as demo: gr.Markdown( """
Marigold is the new state-of-the-art depth estimator for images in the wild. Upload your image into the left side, or click any of the examples below. The result will be computed and appear on the right in the output comparison window. NEW: Scroll down to the new 3D printing part of the demo!
""" ) with gr.Row(): with gr.Column(): input_image = gr.Image( label="Input Image", type="filepath", ) with gr.Accordion("Advanced options", open=False): ensemble_size = gr.Slider( label="Ensemble size", minimum=1, maximum=20, step=1, value=10, ) denoise_steps = gr.Slider( label="Number of denoising steps", minimum=1, maximum=20, step=1, value=10, ) processing_res = gr.Radio( [ ("Native", 0), ("Recommended", 768), ], label="Processing resolution", value=768, ) input_output_16bit = gr.File( label="Predicted depth (16-bit)", visible=False, ) input_output_fp32 = gr.File( label="Predicted depth (32-bit)", visible=False, ) input_output_vis = gr.File( label="Predicted depth (red-near, blue-far)", visible=False, ) with gr.Row(): submit_btn = gr.Button(value="Compute Depth", variant="primary") clear_btn = gr.Button(value="Clear") with gr.Column(): output_slider = ImageSlider( label="Predicted depth (red-near, blue-far)", type="filepath", show_download_button=True, show_share_button=True, interactive=False, elem_classes="slider", position=0.25, ) files = gr.Files( label="Depth outputs", elem_id="download", interactive=False, ) demo_3d_header = gr.Markdown( """This part of the demo uses Marigold depth maps estimated in the previous step to create a 3D-printable model. The models are watertight, with correct normals, and exported in the STL format. We recommended creating the first model with the default parameters and iterating on it until the best result (see Pro Tips below).
""", render=False, ) demo_3d = gr.Row(render=False) with demo_3d: with gr.Column(): with gr.Accordion("3D printing demo: Main options", open=True): plane_near = gr.Slider( label="Relative position of the near plane (between 0 and 1)", minimum=0.0, maximum=1.0, step=0.001, value=0.0, ) plane_far = gr.Slider( label="Relative position of the far plane (between near and 1)", minimum=0.0, maximum=1.0, step=0.001, value=1.0, ) embossing = gr.Slider( label="Embossing level", minimum=0, maximum=100, step=1, value=20, ) with gr.Accordion("3D printing demo: Advanced options", open=False): size_longest_px = gr.Slider( label="Size (px) of the longest side", minimum=256, maximum=1024, step=256, value=512, ) size_longest_cm = gr.Slider( label="Size (cm) of the longest side", minimum=1, maximum=100, step=1, value=10, ) filter_size = gr.Slider( label="Size (px) of the smoothing filter", minimum=1, maximum=5, step=2, value=3, ) frame_thickness = gr.Slider( label="Frame thickness", minimum=0, maximum=100, step=1, value=5, ) frame_near = gr.Slider( label="Frame's near plane offset", minimum=-100, maximum=100, step=1, value=1, ) frame_far = gr.Slider( label="Frame's far plane offset", minimum=1, maximum=10, step=1, value=1, ) with gr.Row(): submit_3d = gr.Button(value="Create 3D", variant="primary") clear_3d = gr.Button(value="Clear 3D") gr.Markdown( """