Manmay's picture
update names
d7f8338
raw
history blame
4.2 kB
import os
import torch
import gradio as gr
import torchaudio
import time
from datetime import datetime
from tortoise.api import TextToSpeech
from tortoise.utils.text import split_and_recombine_text
from tortoise.utils.audio import load_audio, load_voice, load_voices
VOICE_OPTIONS = [
"angie",
"deniro",
"freeman",
"halle",
"lj",
"myself",
"pat2",
"snakes",
"tom",
"daws",
"dreams",
"grace",
"lescault",
"weaver",
"applejack",
"daniel",
"emma",
"geralt",
"jlaw",
"mol",
"pat",
"rainbow",
"tim_reynolds",
"atkins",
"dotrice",
"empire",
"kennard",
"mouse",
"william",
"random", # special option for random voice
"disabled", # special option for disabled voice
]
def inference(
text,
script,
voice,
voice_b,
preset,
seed,
split_by_newline,
):
if text is None or text.strip() == "":
with open(script.name) as f:
text = f.read()
if text.strip() == "":
raise gr.Error("Please provide either text or script file with content.")
if split_by_newline == "Yes":
texts = list(filter(lambda x: x.strip() != "", text.split("\n")))
else:
texts = split_and_recombine_text(text)
voices = [voice]
if voice_b != "disabled":
voices.append(voice_b)
if len(voices) == 1:
voice_samples, conditioning_latents = load_voice(voice)
else:
voice_samples, conditioning_latents = load_voices(voices)
start_time = time.time()
all_parts = []
for j, text in enumerate(texts):
gen = tts.tts_with_preset(
text,
voice_samples=voice_samples,
conditioning_latents=conditioning_latents,
preset=preset,
k=1,
use_deterministic_seed=seed,
)
audio_ = gen.squeeze(0).cpu()
all_parts.append(audio_)
full_audio = torch.cat(all_parts, dim=-1)
# os.makedirs("outputs", exist_ok=True)
# torchaudio.save(os.path.join("outputs", f"{name}.wav"), full_audio, 24000)
with open("Tortoise_TTS_Runs_Scripts.log", "a") as f:
f.write(
f"{datetime.now()} | Voice: {','.join(voices)} | Text: {text} | Quality: {preset} | Time Taken (s): {time.time()-start_time} | Seed: {seed}\n"
)
output_texts = [f"({j+1}) {texts[j]}" for j in range(len(texts))]
return ((24000, full_audio.squeeze().cpu().numpy()), "\n".join(output_texts))
def main():
text = gr.Textbox(
lines=4,
label="Text (Provide either text, or upload a newline separated text file below):",
)
script = gr.File(label="Upload a text file")
preset = gr.Radio(
["ultra_fast", "fast", "standard", "high_quality"],
value="fast",
label="Preset mode (determines quality with tradeoff over speed):",
type="value",
)
voice = gr.Dropdown(
VOICE_OPTIONS, value="angie", label="Select voice:", type="value"
)
voice_b = gr.Dropdown(
VOICE_OPTIONS,
value="disabled",
label="(Optional) Select second voice:",
type="value",
)
seed = gr.Number(value=0, precision=0, label="Seed (for reproducibility):")
split_by_newline = gr.Radio(
["Yes", "No"],
label="Split by newline (If [No], it will automatically try to find relevant splits):",
type="value",
value="No",
)
output_audio = gr.Audio(label="Combined audio:")
output_text = gr.Textbox(label="Split texts with indices:", lines=10)
interface = gr.Interface(
fn=inference,
inputs=[
text,
script,
voice,
voice_b,
preset,
seed,
split_by_newline,
],
outputs=[output_audio, output_text],
)
interface.launch()
if __name__ == "__main__":
tts = TextToSpeech(kv_cache=True, use_deepspeed=True, half=True)
with open("Tortoise_TTS_Runs_Scripts.log", "a") as f:
f.write(
f"\n\n-------------------------Tortoise TTS Scripts Logs, {datetime.now()}-------------------------\n"
)
main()