Spaces:
Running
Running
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
def fused_leaky_relu(input, bias=None, negative_slope=0.2, scale=2 ** 0.5): | |
if bias is not None: | |
rest_dim = [1] * (input.ndim - bias.ndim - 1) | |
return ( | |
F.leaky_relu( | |
input + bias.view(1, bias.shape[0], *rest_dim), negative_slope=negative_slope | |
) | |
* scale | |
) | |
else: | |
return F.leaky_relu(input, negative_slope=0.2) * scale | |
class EqualLinear(nn.Module): | |
def __init__( | |
self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1 | |
): | |
super().__init__() | |
self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul)) | |
if bias: | |
self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init)) | |
else: | |
self.bias = None | |
self.scale = (1 / math.sqrt(in_dim)) * lr_mul | |
self.lr_mul = lr_mul | |
def forward(self, input): | |
out = F.linear(input, self.weight * self.scale) | |
out = fused_leaky_relu(out, self.bias * self.lr_mul) | |
return out | |
class RandomLatentConverter(nn.Module): | |
def __init__(self, channels): | |
super().__init__() | |
self.layers = nn.Sequential(*[EqualLinear(channels, channels, lr_mul=.1) for _ in range(5)], | |
nn.Linear(channels, channels)) | |
self.channels = channels | |
def forward(self, ref): | |
r = torch.randn(ref.shape[0], self.channels, device=ref.device) | |
y = self.layers(r) | |
return y | |
if __name__ == '__main__': | |
model = RandomLatentConverter(512) | |
model(torch.randn(5,512)) |