File size: 6,226 Bytes
61d6774
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b73d2b3
61d6774
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b73d2b3
 
61d6774
 
 
 
 
 
 
 
 
 
 
 
 
a18f8a1
 
61d6774
 
 
 
a18f8a1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as transforms
import kornia

from PIL import Image
import numpy as np
import albumentations as A
from albumentations.pytorch import ToTensorV2


device = 'cuda' if torch.cuda.is_available() else 'cpu'


# Define model

class BlurUpSample(nn.Module):
    def __init__(self, c):
        super(BlurUpSample, self).__init__()
        self.blurpool =  kornia.filters.GaussianBlur2d((3, 3), (1.5, 1.5))
        self.upsample = nn.Upsample(scale_factor=(2, 2), mode='bilinear', align_corners=False)

    def forward(self, x):
        x = self.blurpool(x)
        x = self.upsample(x)

        return x

class DownLayer(nn.Module):
    def __init__(self, c_in, c_out):
        super(DownLayer, self).__init__()
        self.maxblurpool = kornia.filters.MaxBlurPool2D(kernel_size=3)
        self.conv1 = nn.Conv2d(c_in, c_out, kernel_size=3, stride=1, padding=1)
        self.bn1 = nn.BatchNorm2d(c_out)
        self.leakyrelu = nn.LeakyReLU(inplace=True)
        self.conv2 = nn.Conv2d(c_out, c_out, kernel_size=3, stride=1, padding=1)
        self.bn2 = nn.BatchNorm2d(c_out)

    def forward(self, x):
        x = self.maxblurpool(x)
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.leakyrelu(x)
        x = self.conv2(x)
        x = self.bn2(x)
        x = self.leakyrelu(x)
        return x


class UpLayer(nn.Module):
    def __init__(self, c_in, c_out):
        super(UpLayer, self).__init__()
        self.upsample = BlurUpSample(c_in)
        self.conv1 = nn.Conv2d(c_in+ c_out, c_out, kernel_size=3, stride=1, padding=1)
        self.bn1 = nn.BatchNorm2d(c_out)
        self.leakyrelu = nn.LeakyReLU(inplace=True)
        self.conv2 = nn.Conv2d(c_out, c_out, kernel_size=3, stride=1, padding=1)
        self.bn2 = nn.BatchNorm2d(c_out)

    def forward(self, x, skip_x):
        x = self.upsample(x)

        dh = skip_x.size(2) - x.size(2)
        dw = skip_x.size(3) - x.size(3)

        x = F.pad(x, (dw // 2, dw - dw // 2, dh // 2, dh - dh // 2))

        x = torch.cat([x, skip_x], dim=1)

        x = self.conv1(x)
        x = self.bn1(x)
        x = self.leakyrelu(x)
        x = self.conv2(x)
        x = self.bn2(x)
        x = self.leakyrelu(x)
        return x

class Generator(nn.Module):
  def __init__(self):
    super(Generator, self).__init__()
    self.conv1 = nn.Conv2d(5, 64, kernel_size=3, stride=1, padding=1)
    self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1)
    self.batchnorm1 = nn.BatchNorm2d(64)
    self.leakyrelu = nn.LeakyReLU(inplace=True)
    self.downlayer1 = DownLayer(64, 128)
    self.downlayer2 = DownLayer(128, 256)
    self.downlayer3 = DownLayer(256, 512)
    self.downlayer4 = DownLayer(512, 1024)
    self.uplayer1 = UpLayer(1024, 512)
    self.uplayer2 = UpLayer(512, 256)
    self.uplayer3 = UpLayer(256, 128)
    self.uplayer4 = UpLayer(128, 64)
    self.conv3 = nn.Conv2d(64, 3, kernel_size=1, stride=1, padding=0)

  def forward(self, x):
    #print(f'Input Shape: {x.shape}')
    x1 = self.conv1(x)
    x1 = self.batchnorm1(x1)
    x1 = self.leakyrelu(x1)
    x1 = self.conv2(x1)
    x1 = self.batchnorm1(x1)
    x1 = self.leakyrelu(x1)

    #print(f'Processed Input Shape: {x.shape}')

    x2 = self.downlayer1(x1)
    x3 = self.downlayer2(x2)
    x4 = self.downlayer3(x3)
    x5 = self.downlayer4(x4)

    #print(f'Done Downlayering... Shape: {x5.shape}')

    x = self.uplayer1(x5, x4)
    x = self.uplayer2(x, x3)
    x = self.uplayer3(x, x2)
    x = self.uplayer4(x, x1)
    x = self.conv3(x)

    #print(f'Output Shape: {x.shape}')
    return x


transform_resize = A.Compose([
    A.Resize(512, 512),
    ToTensorV2(),
])




# Load model
generator_model = Generator()
generator_model.load_state_dict(torch.load('large-aging-model.h5',map_location=torch.device(device)))
generator_model.to(device)
#generator_model.eval()
print("")



def age_filter(image, input_age, output_age):

    resized_image = image.resize((512,512))
    
    input_image = transform_resize(image=np.array(image))['image']/255


    #input_image=(dataset[0]['normalized_input_image'])
    age_map1 = torch.full((1, 512, 512), input_age / 100)
    age_map2 = torch.full((1, 512, 512),  output_age / 100)

    input_tensor = torch.cat((input_image, age_map1,age_map2), dim=0)
    
    with torch.no_grad():
        model_output = generator_model(input_tensor.unsqueeze(0).to(device))
        
    np_test = np.array(image)

    new_image = (model_output.squeeze(0).cpu().permute(1,2,0).numpy()*255+np.array(resized_image)).astype('uint8')

    sample_image = np.array(Image.fromarray(new_image).resize((np_test.shape[1],np_test.shape[0]))).astype('uint8')
    return sample_image

import gradio as gr
from torchvision.transforms.functional import crop



def crop_and_process_image(input_img,input_age,output_ag):
    # Crop the image using the provided crop tool coordinates
    processed_image = Image.fromarray(input_img)  # Modify this line to preprocess the cropped image

    # Run the processed image through your model
    output = age_filter(processed_image, input_age, output_ag)
    # Return the output
    return output

# Define the input image component with the crop tool

# Define the output image component
output_image = gr.Image(label="Output Image", type="pil")


input_age = gr.Slider(label="Current Age")
output_age = gr.Slider(label="Desired Age")


# Define the function to be called when the button is pressed
def process_image(input_img,input_age,output_age):
    # Convert the input image to a PyTorch tensor

    # Call the crop_and_process_image function
    output = crop_and_process_image(input_img,input_age,output_age)

    # Convert the output tensor to a NumPy array and return it
    output = Image.fromarray(output)
    output.show()
    return output
    
description="Enter age of input image and desired age. Crop out face. Better results on high resolution." 



# Create the Gradio interface
gr.Interface(fn=process_image, inputs=[gr.Image(source="upload", type="filepath", label="init_img | 512*512 px"),input_age,output_age], outputs=output_image,description=description, title="Age Transformation").launch(debug=True)