File size: 6,059 Bytes
61d6774
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b73d2b3
61d6774
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d99f2e
61d6774
 
 
8b37979
 
61d6774
 
 
 
 
 
 
 
a18f8a1
1bd32c0
61d6774
 
 
 
a927101
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as transforms
import kornia

from PIL import Image
import numpy as np
import albumentations as A
from albumentations.pytorch import ToTensorV2


device = 'cuda' if torch.cuda.is_available() else 'cpu'


# Define model

class BlurUpSample(nn.Module):
    def __init__(self, c):
        super(BlurUpSample, self).__init__()
        self.blurpool =  kornia.filters.GaussianBlur2d((3, 3), (1.5, 1.5))
        self.upsample = nn.Upsample(scale_factor=(2, 2), mode='bilinear', align_corners=False)

    def forward(self, x):
        x = self.blurpool(x)
        x = self.upsample(x)

        return x

class DownLayer(nn.Module):
    def __init__(self, c_in, c_out):
        super(DownLayer, self).__init__()
        self.maxblurpool = kornia.filters.MaxBlurPool2D(kernel_size=3)
        self.conv1 = nn.Conv2d(c_in, c_out, kernel_size=3, stride=1, padding=1)
        self.bn1 = nn.BatchNorm2d(c_out)
        self.leakyrelu = nn.LeakyReLU(inplace=True)
        self.conv2 = nn.Conv2d(c_out, c_out, kernel_size=3, stride=1, padding=1)
        self.bn2 = nn.BatchNorm2d(c_out)

    def forward(self, x):
        x = self.maxblurpool(x)
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.leakyrelu(x)
        x = self.conv2(x)
        x = self.bn2(x)
        x = self.leakyrelu(x)
        return x


class UpLayer(nn.Module):
    def __init__(self, c_in, c_out):
        super(UpLayer, self).__init__()
        self.upsample = BlurUpSample(c_in)
        self.conv1 = nn.Conv2d(c_in+ c_out, c_out, kernel_size=3, stride=1, padding=1)
        self.bn1 = nn.BatchNorm2d(c_out)
        self.leakyrelu = nn.LeakyReLU(inplace=True)
        self.conv2 = nn.Conv2d(c_out, c_out, kernel_size=3, stride=1, padding=1)
        self.bn2 = nn.BatchNorm2d(c_out)

    def forward(self, x, skip_x):
        x = self.upsample(x)

        dh = skip_x.size(2) - x.size(2)
        dw = skip_x.size(3) - x.size(3)

        x = F.pad(x, (dw // 2, dw - dw // 2, dh // 2, dh - dh // 2))

        x = torch.cat([x, skip_x], dim=1)

        x = self.conv1(x)
        x = self.bn1(x)
        x = self.leakyrelu(x)
        x = self.conv2(x)
        x = self.bn2(x)
        x = self.leakyrelu(x)
        return x

class Generator(nn.Module):
  def __init__(self):
    super(Generator, self).__init__()
    self.conv1 = nn.Conv2d(5, 64, kernel_size=3, stride=1, padding=1)
    self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1)
    self.batchnorm1 = nn.BatchNorm2d(64)
    self.leakyrelu = nn.LeakyReLU(inplace=True)
    self.downlayer1 = DownLayer(64, 128)
    self.downlayer2 = DownLayer(128, 256)
    self.downlayer3 = DownLayer(256, 512)
    self.downlayer4 = DownLayer(512, 1024)
    self.uplayer1 = UpLayer(1024, 512)
    self.uplayer2 = UpLayer(512, 256)
    self.uplayer3 = UpLayer(256, 128)
    self.uplayer4 = UpLayer(128, 64)
    self.conv3 = nn.Conv2d(64, 3, kernel_size=1, stride=1, padding=0)

  def forward(self, x):
    #print(f'Input Shape: {x.shape}')
    x1 = self.conv1(x)
    x1 = self.batchnorm1(x1)
    x1 = self.leakyrelu(x1)
    x1 = self.conv2(x1)
    x1 = self.batchnorm1(x1)
    x1 = self.leakyrelu(x1)

    #print(f'Processed Input Shape: {x.shape}')

    x2 = self.downlayer1(x1)
    x3 = self.downlayer2(x2)
    x4 = self.downlayer3(x3)
    x5 = self.downlayer4(x4)

    #print(f'Done Downlayering... Shape: {x5.shape}')

    x = self.uplayer1(x5, x4)
    x = self.uplayer2(x, x3)
    x = self.uplayer3(x, x2)
    x = self.uplayer4(x, x1)
    x = self.conv3(x)

    #print(f'Output Shape: {x.shape}')
    return x


transform_resize = A.Compose([
    A.Resize(512, 512),
    ToTensorV2(),
])




# Load model
generator_model = Generator()
generator_model.load_state_dict(torch.load('large-aging-model.h5',map_location=torch.device(device)))
generator_model.to(device)
#generator_model.eval()
print("")



def age_filter(image, input_age, output_age):

    resized_image = image.resize((512,512))
    
    input_image = transform_resize(image=np.array(image))['image']/255


    age_map1 = torch.full((1, 512, 512), input_age / 100)
    age_map2 = torch.full((1, 512, 512),  output_age / 100)

    input_tensor = torch.cat((input_image, age_map1,age_map2), dim=0)
    
    with torch.no_grad():
        model_output = generator_model(input_tensor.unsqueeze(0).to(device))
        
    np_test = np.array(image)

    new_image = (model_output.squeeze(0).cpu().permute(1,2,0).numpy()*255+np.array(resized_image)).astype('uint8')

    sample_image = np.array(Image.fromarray(new_image).resize((np_test.shape[1],np_test.shape[0]))).astype('uint8')
    return sample_image

import gradio as gr
from torchvision.transforms.functional import crop



def crop_and_process_image(input_img,input_age,output_ag):
    # Crop the image using the provided crop tool coordinates
    processed_image = Image.fromarray(input_img)  # Modify this line to preprocess the cropped image

    # Run the processed image through your model
    output = age_filter(processed_image, input_age, output_ag)
    # Return the output
    return output

input_image = gr.Image(label="Input Image", interactive=True)

output_image = gr.Image(label="Output Image", type="pil")

input_age = gr.Slider(label="Current Age",minimum=18,maximum=80)
output_age = gr.Slider(label="Desired Age",minimum=18,maximum=80)


def process_image(input_img,input_age,output_age):

    output = crop_and_process_image(input_img,input_age,output_age)

    output = Image.fromarray(output)
    return output
    
description="Enter age of input image and desired age. Crop out background. Better results on high resolution (512x512 face). To avoid background/hair artifacts, use with a face parser." 



# Create the Gradio interface
gr.Interface(fn=process_image, inputs=[input_image,input_age,output_age], outputs=output_image,description=description, title="Age Transformation",cache_examples = True, examples=[["example_image_input2.jpeg",30,65],["example_image_output.png",20,40]]).launch()