Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torchvision.transforms as transforms | |
import kornia | |
from PIL import Image | |
import numpy as np | |
import albumentations as A | |
from albumentations.pytorch import ToTensorV2 | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
# Define model | |
class BlurUpSample(nn.Module): | |
def __init__(self, c): | |
super(BlurUpSample, self).__init__() | |
self.blurpool = kornia.filters.GaussianBlur2d((3, 3), (1.5, 1.5)) | |
self.upsample = nn.Upsample(scale_factor=(2, 2), mode='bilinear', align_corners=False) | |
def forward(self, x): | |
x = self.blurpool(x) | |
x = self.upsample(x) | |
return x | |
class DownLayer(nn.Module): | |
def __init__(self, c_in, c_out): | |
super(DownLayer, self).__init__() | |
self.maxblurpool = kornia.filters.MaxBlurPool2D(kernel_size=3) | |
self.conv1 = nn.Conv2d(c_in, c_out, kernel_size=3, stride=1, padding=1) | |
self.bn1 = nn.BatchNorm2d(c_out) | |
self.leakyrelu = nn.LeakyReLU(inplace=True) | |
self.conv2 = nn.Conv2d(c_out, c_out, kernel_size=3, stride=1, padding=1) | |
self.bn2 = nn.BatchNorm2d(c_out) | |
def forward(self, x): | |
x = self.maxblurpool(x) | |
x = self.conv1(x) | |
x = self.bn1(x) | |
x = self.leakyrelu(x) | |
x = self.conv2(x) | |
x = self.bn2(x) | |
x = self.leakyrelu(x) | |
return x | |
class UpLayer(nn.Module): | |
def __init__(self, c_in, c_out): | |
super(UpLayer, self).__init__() | |
self.upsample = BlurUpSample(c_in) | |
self.conv1 = nn.Conv2d(c_in+ c_out, c_out, kernel_size=3, stride=1, padding=1) | |
self.bn1 = nn.BatchNorm2d(c_out) | |
self.leakyrelu = nn.LeakyReLU(inplace=True) | |
self.conv2 = nn.Conv2d(c_out, c_out, kernel_size=3, stride=1, padding=1) | |
self.bn2 = nn.BatchNorm2d(c_out) | |
def forward(self, x, skip_x): | |
x = self.upsample(x) | |
dh = skip_x.size(2) - x.size(2) | |
dw = skip_x.size(3) - x.size(3) | |
x = F.pad(x, (dw // 2, dw - dw // 2, dh // 2, dh - dh // 2)) | |
x = torch.cat([x, skip_x], dim=1) | |
x = self.conv1(x) | |
x = self.bn1(x) | |
x = self.leakyrelu(x) | |
x = self.conv2(x) | |
x = self.bn2(x) | |
x = self.leakyrelu(x) | |
return x | |
class Generator(nn.Module): | |
def __init__(self): | |
super(Generator, self).__init__() | |
self.conv1 = nn.Conv2d(5, 64, kernel_size=3, stride=1, padding=1) | |
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1) | |
self.batchnorm1 = nn.BatchNorm2d(64) | |
self.leakyrelu = nn.LeakyReLU(inplace=True) | |
self.downlayer1 = DownLayer(64, 128) | |
self.downlayer2 = DownLayer(128, 256) | |
self.downlayer3 = DownLayer(256, 512) | |
self.downlayer4 = DownLayer(512, 1024) | |
self.uplayer1 = UpLayer(1024, 512) | |
self.uplayer2 = UpLayer(512, 256) | |
self.uplayer3 = UpLayer(256, 128) | |
self.uplayer4 = UpLayer(128, 64) | |
self.conv3 = nn.Conv2d(64, 3, kernel_size=1, stride=1, padding=0) | |
def forward(self, x): | |
#print(f'Input Shape: {x.shape}') | |
x1 = self.conv1(x) | |
x1 = self.batchnorm1(x1) | |
x1 = self.leakyrelu(x1) | |
x1 = self.conv2(x1) | |
x1 = self.batchnorm1(x1) | |
x1 = self.leakyrelu(x1) | |
#print(f'Processed Input Shape: {x.shape}') | |
x2 = self.downlayer1(x1) | |
x3 = self.downlayer2(x2) | |
x4 = self.downlayer3(x3) | |
x5 = self.downlayer4(x4) | |
#print(f'Done Downlayering... Shape: {x5.shape}') | |
x = self.uplayer1(x5, x4) | |
x = self.uplayer2(x, x3) | |
x = self.uplayer3(x, x2) | |
x = self.uplayer4(x, x1) | |
x = self.conv3(x) | |
#print(f'Output Shape: {x.shape}') | |
return x | |
transform_resize = A.Compose([ | |
A.Resize(512, 512), | |
ToTensorV2(), | |
]) | |
# Load model | |
generator_model = Generator() | |
generator_model.load_state_dict(torch.load('large-aging-model.h5',map_location=torch.device(device))) | |
generator_model.to(device) | |
#generator_model.eval() | |
print("") | |
def age_filter(image, input_age, output_age): | |
resized_image = image.resize((512,512)) | |
input_image = transform_resize(image=np.array(image))['image']/255 | |
age_map1 = torch.full((1, 512, 512), input_age / 100) | |
age_map2 = torch.full((1, 512, 512), output_age / 100) | |
input_tensor = torch.cat((input_image, age_map1,age_map2), dim=0) | |
with torch.no_grad(): | |
model_output = generator_model(input_tensor.unsqueeze(0).to(device)) | |
np_test = np.array(image) | |
new_image = (model_output.squeeze(0).cpu().permute(1,2,0).numpy()*255+np.array(resized_image)).astype('uint8') | |
sample_image = np.array(Image.fromarray(new_image).resize((np_test.shape[1],np_test.shape[0]))).astype('uint8') | |
return sample_image | |
import gradio as gr | |
from torchvision.transforms.functional import crop | |
def crop_and_process_image(input_img,input_age,output_ag): | |
# Crop the image using the provided crop tool coordinates | |
processed_image = Image.fromarray(input_img) # Modify this line to preprocess the cropped image | |
# Run the processed image through your model | |
output = age_filter(processed_image, input_age, output_ag) | |
# Return the output | |
return output | |
input_image = gr.Image(label="Input Image", interactive=True) | |
output_image = gr.Image(label="Output Image", type="pil") | |
input_age = gr.Slider(label="Current Age",minimum=18,maximum=80) | |
output_age = gr.Slider(label="Desired Age",minimum=18,maximum=80) | |
def process_image(input_img,input_age,output_age): | |
output = crop_and_process_image(input_img,input_age,output_age) | |
output = Image.fromarray(output) | |
return output | |
description="Enter age of input image and desired age. Crop out background. Better results on high resolution (512x512 face). To avoid background/hair artifacts, use with a face parser." | |
# Create the Gradio interface | |
gr.Interface(fn=process_image, inputs=[input_image,input_age,output_age], outputs=output_image,description=description, title="Age Transformation",examples=[["example_image_input2.jpeg",30,65],["example_image_output.png",20,40]]).launch(debug=True) |