Spaces:
Build error
Build error
import gradio as gr | |
from transformers import pipeline | |
import pandas as pd | |
import numpy as np | |
import os | |
model_checkpoint = "penpen/novel-zh-en" | |
translator = pipeline("translation", model=model_checkpoint, max_time=7, num_beams=1) | |
default_dict = pd.read_csv("example_dictionary.csv", names=["Chinese", "English"]) | |
examples = pd.read_csv("examples.csv", header = None) | |
def predict(text, df): | |
translation = "" | |
terms_dict = {chinese: english for chinese, english in zip(df["Chinese"].tolist(), df["English"].tolist())} | |
for key in terms_dict: | |
if key in text: | |
masking = "MASK"*len(key) | |
text = text.replace(key, "<TERM>" + masking+ "<GLOS>" + terms_dict[key] + "</GLOS>") | |
split_text = text.splitlines() | |
for text in split_text: | |
text = text.strip() | |
if text: | |
if len(text) < 512: | |
sentence = translator(text)[0]["translation_text"] + '\n\n' | |
translation+=sentence | |
print(split_text) | |
else: | |
for i in range(0,len(text),512): | |
if i+512>len(text): | |
sentence = translator(text[i:])[0]["translation_text"] | |
else: | |
sentence = translator(text[i:i+512])[0]["translation_text"] | |
translation+=sentence | |
return translation | |
def load_dict(file): | |
df = pd.read_csv(file.name, names=["Chinese", "English"]) | |
return df, df | |
def search_dict(query, df): | |
if not query: | |
return df | |
mask = np.column_stack([df[col].str.contains(query, na=False) for col in df]) | |
return df.loc[mask.any(axis=1)] | |
with gr.Blocks() as project: | |
dict_hidden = gr.State(default_dict) | |
gr.Markdown("<center><h1>Chinese Webnovel Translator</h1> A translator that is fine-tuned on Chinese Webnovels</center>") | |
with gr.Tab("Translator"): | |
with gr.Row(): | |
with gr.Column(scale=1, min_width=600): | |
translate_input = gr.Textbox(label="Chinese", lines=7, max_lines = 100, placeholder="Chinese...") | |
translate_button = gr.Button("Translate") | |
translate_hidden = gr.State("") | |
translate_output = gr.Textbox(label="English", lines=7, max_lines = 100, placeholder="English...") | |
example = gr.Examples(inputs = translate_input, examples=examples[0].tolist()) | |
with gr.Tab("Proper Noun Dictionary"): | |
with gr.Row(): | |
with gr.Column(scale=1, min_width=600): | |
dict_example_file = gr.File(label="Example Dictionary", value = "example_dictionary.csv") | |
dict_file = gr.File(interactive = True, label="Upload a custom dictionary (CSV File)") | |
dict_upload_button = gr.Button("Upload") | |
dict_search = gr.Textbox(label="Search Dictionary") | |
dict_search_button = gr.Button("Search") | |
dict_display = gr.Dataframe(value = default_dict, max_rows = 5, col_count=(2, "fixed")) | |
translate_button.click(predict, inputs=[translate_input, dict_hidden], outputs=translate_output) | |
dict_upload_button.click(load_dict, inputs=dict_file, outputs = [dict_hidden, dict_display]) | |
dict_search_button.click(search_dict, inputs=[dict_search, dict_hidden], outputs = dict_display) | |
project.launch(debug=True) |