Spaces:
Running
Running
Yotam-Perlitz
commited on
Commit
β’
e2be414
1
Parent(s):
1035432
add upload benchmark option
Browse filesSigned-off-by: Yotam-Perlitz <y.perlitz@ibm.com>
app.py
CHANGED
@@ -7,28 +7,36 @@ import streamlit as st
|
|
7 |
from bat import Benchmark, Config, Reporter, Tester
|
8 |
from bat.utils import get_holistic_benchmark
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
st.markdown(
|
34 |
"""<h1 style='text-align: center; color: black;'>ποΈββοΈ BenchBench Leaderboard ποΈββοΈ</h1>""",
|
@@ -47,46 +55,57 @@ st.subheader("The Leaderboard", divider=True)
|
|
47 |
# st.subheader("ποΈββοΈ BenchBench Leaderboard π", divider=True)
|
48 |
|
49 |
leftcol, rightcol = st.columns([2, 1])
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
|
92 |
def run_load(
|
@@ -95,6 +114,8 @@ def run_load(
|
|
95 |
model_select_strategy_list=["random"],
|
96 |
corr_types=["kendall"],
|
97 |
n_exps=10,
|
|
|
|
|
98 |
):
|
99 |
# Create a hash of the inputs to generate a unique cache file for each set of inputs
|
100 |
input_str = (
|
@@ -104,6 +125,14 @@ def run_load(
|
|
104 |
+ str(corr_types)
|
105 |
+ str(n_exps)
|
106 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
input_hash = hashlib.md5(input_str.encode()).hexdigest()
|
108 |
cache_file = f"agreements_cache_{input_hash}.csv"
|
109 |
|
@@ -112,7 +141,7 @@ def run_load(
|
|
112 |
cache_path = os.path.join(cache_dir, cache_file)
|
113 |
|
114 |
# Check if the cache file exists
|
115 |
-
if os.path.exists(cache_path):
|
116 |
print("Loading cached results...")
|
117 |
agreements = pd.read_csv(cache_path)
|
118 |
return agreements
|
@@ -126,11 +155,33 @@ def run_load(
|
|
126 |
model_select_strategy_list=model_select_strategy_list,
|
127 |
corr_types=corr_types,
|
128 |
n_exps=n_exps if n_models_taken_list != [0] else 1,
|
129 |
-
# reference_data_path="data/combined_holistic.csv",
|
130 |
)
|
131 |
|
132 |
-
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
holistic.clear_repeated_scenarios()
|
135 |
holistic.add_aggragete(
|
136 |
new_col_name="aggregate",
|
@@ -139,16 +190,18 @@ def run_load(
|
|
139 |
min_scenario_for_models_to_appear_in_agg=5,
|
140 |
)
|
141 |
|
142 |
-
allbench = Benchmark(
|
143 |
-
|
144 |
-
|
145 |
-
)
|
|
|
|
|
146 |
allbench.df = allbench.df.drop(columns=["tag"])
|
147 |
allbench.clear_repeated_scenarios()
|
148 |
allbench.df = allbench.df.query("scenario not in @holistic_scenarios")
|
149 |
|
150 |
-
allbench.df = allbench.df[~allbench.df["scenario"].str.contains("_mixed")]
|
151 |
-
allbench.df = allbench.df[~allbench.df["scenario"].str.contains("agentbench")]
|
152 |
|
153 |
# st.dataframe(holistic.df.query('scenario=="aggregate"'))
|
154 |
|
@@ -158,6 +211,10 @@ def run_load(
|
|
158 |
|
159 |
# len(allbench.get_scenario_appearences_count().keys())
|
160 |
|
|
|
|
|
|
|
|
|
161 |
agreements = tester.all_vs_all_agreement_testing(
|
162 |
allbench, single_source_scenario="aggregate"
|
163 |
)
|
@@ -173,8 +230,12 @@ agreements = run_load(
|
|
173 |
model_select_strategy_list=[model_select_strategy],
|
174 |
corr_types=[corr_type],
|
175 |
n_exps=n_exps,
|
|
|
176 |
)
|
177 |
|
|
|
|
|
|
|
178 |
reporter = Reporter()
|
179 |
z_scores = reporter.get_all_z_scores(agreements=agreements, aggragate_name="aggregate")
|
180 |
|
@@ -201,17 +262,29 @@ data = (
|
|
201 |
|
202 |
data = data[~data["Source"].str.contains("livebench")]
|
203 |
data = data[~data["Source"].str.contains("biggen")]
|
204 |
-
data.drop(columns=["Source"], inplace=True)
|
205 |
-
data["Benchmark"] = data["Benchmark"].apply(lambda x:
|
|
|
206 |
|
207 |
# Apply coloring based on 'Z' valuesz
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
|
209 |
-
styled_data = data.style.background_gradient(
|
210 |
-
subset=["Z Score"],
|
211 |
-
cmap="RdYlGn",
|
212 |
-
vmin=-data["Z Score"].abs().max(),
|
213 |
-
vmax=data["Z Score"].abs().max(),
|
214 |
-
).format(subset=["Z Score", corr_name, "p value of Corr."], formatter="{:.2}")
|
215 |
|
216 |
st.dataframe(
|
217 |
data=styled_data,
|
|
|
7 |
from bat import Benchmark, Config, Reporter, Tester
|
8 |
from bat.utils import get_holistic_benchmark
|
9 |
|
10 |
+
|
11 |
+
def get_nice_benchmark_name(bench_name):
|
12 |
+
benchmarks_dict = {
|
13 |
+
"arena_elo": "LMSys Arena",
|
14 |
+
"mt_bench": "MT Bench",
|
15 |
+
"mixeval": "Mix Eval",
|
16 |
+
"alpacav2": "AlpacaEval V2",
|
17 |
+
"arena_hard": "Arena Hard",
|
18 |
+
"arc_c": "ARC-C",
|
19 |
+
"eq_benchv2": "EQ Bench V2",
|
20 |
+
"agieval": "AGIEval",
|
21 |
+
"llmonitor": "LLMonitor",
|
22 |
+
"bbh": "BBH",
|
23 |
+
"mmlu": "MMLU",
|
24 |
+
"alpacav1": "AlpacaEval V1",
|
25 |
+
"magi": "MAGI",
|
26 |
+
"alpacaeval2_lc": "AlpacaEval V2 Length Adjusted",
|
27 |
+
"gpt4all": "GPT-4-All",
|
28 |
+
"humaneval": "HumanEval",
|
29 |
+
"mbpp": "MBPP",
|
30 |
+
"hellaswag": "HellaSwag",
|
31 |
+
"hugging_6": "HF OpenLLM V1",
|
32 |
+
"winogrande": "Winogrande",
|
33 |
+
}
|
34 |
+
|
35 |
+
if bench_name in benchmarks_dict:
|
36 |
+
return benchmarks_dict[bench_name]
|
37 |
+
else:
|
38 |
+
return bench_name
|
39 |
+
|
40 |
|
41 |
st.markdown(
|
42 |
"""<h1 style='text-align: center; color: black;'>ποΈββοΈ BenchBench Leaderboard ποΈββοΈ</h1>""",
|
|
|
55 |
# st.subheader("ποΈββοΈ BenchBench Leaderboard π", divider=True)
|
56 |
|
57 |
leftcol, rightcol = st.columns([2, 1])
|
58 |
+
|
59 |
+
with st.expander("Leaderboard configurations (defaults are great BTW)", icon="βοΈ"):
|
60 |
+
with st.form("my_form"):
|
61 |
+
all_scenarios_for_aggragate_with_all = all_scenarios_for_aggragate.tolist()
|
62 |
+
all_scenarios_for_aggragate_with_all.append("All Holistic")
|
63 |
+
|
64 |
+
aggragate_scenarios = st.multiselect(
|
65 |
+
"Scenarios in Aggregate",
|
66 |
+
all_scenarios_for_aggragate_with_all,
|
67 |
+
["All Holistic"],
|
68 |
+
# all_scenarios_for_aggragate,
|
69 |
+
)
|
70 |
+
|
71 |
+
corr_type = st.selectbox(
|
72 |
+
label="Select Correlation type", options=["kendall", "pearson"], index=0
|
73 |
+
)
|
74 |
+
|
75 |
+
aggragate_scenario_blacklist = (
|
76 |
+
[
|
77 |
+
scen
|
78 |
+
for scen in all_scenarios_for_aggragate
|
79 |
+
if scen not in aggragate_scenarios
|
80 |
+
]
|
81 |
+
if "All Holistic" not in aggragate_scenarios
|
82 |
+
else []
|
83 |
+
)
|
84 |
+
|
85 |
+
model_select_strategy = st.selectbox(
|
86 |
+
label="Select strategy",
|
87 |
+
options=["random", "top_aggregate", "somewhere_aggregate"],
|
88 |
+
index=0,
|
89 |
+
)
|
90 |
+
|
91 |
+
n_models_taken_list = [5]
|
92 |
+
n_exps = 10
|
93 |
+
|
94 |
+
submitted = st.form_submit_button(label="Run BAT")
|
95 |
+
|
96 |
+
|
97 |
+
uploaded_file = st.file_uploader("add your benchmark as a CSV")
|
98 |
+
st.download_button(
|
99 |
+
label="Download example CSV",
|
100 |
+
data=pd.read_csv("assets/mybench.csv").to_csv().encode("utf-8"),
|
101 |
+
file_name="mybench.csv",
|
102 |
+
mime="text/csv",
|
103 |
+
)
|
104 |
+
|
105 |
+
my_benchmark = Benchmark()
|
106 |
+
if uploaded_file is not None:
|
107 |
+
df = pd.read_csv(uploaded_file)
|
108 |
+
my_benchmark.assign_df(df, data_source="Uploaded Benchmark")
|
109 |
|
110 |
|
111 |
def run_load(
|
|
|
114 |
model_select_strategy_list=["random"],
|
115 |
corr_types=["kendall"],
|
116 |
n_exps=10,
|
117 |
+
my_benchmark=Benchmark(),
|
118 |
+
use_caching=False,
|
119 |
):
|
120 |
# Create a hash of the inputs to generate a unique cache file for each set of inputs
|
121 |
input_str = (
|
|
|
125 |
+ str(corr_types)
|
126 |
+ str(n_exps)
|
127 |
)
|
128 |
+
|
129 |
+
if not my_benchmark.is_empty:
|
130 |
+
input_str += str(
|
131 |
+
hashlib.sha256(
|
132 |
+
my_benchmark.df.to_csv(index=False).encode("utf-8")
|
133 |
+
).hexdigest()
|
134 |
+
)
|
135 |
+
|
136 |
input_hash = hashlib.md5(input_str.encode()).hexdigest()
|
137 |
cache_file = f"agreements_cache_{input_hash}.csv"
|
138 |
|
|
|
141 |
cache_path = os.path.join(cache_dir, cache_file)
|
142 |
|
143 |
# Check if the cache file exists
|
144 |
+
if os.path.exists(cache_path) and use_caching:
|
145 |
print("Loading cached results...")
|
146 |
agreements = pd.read_csv(cache_path)
|
147 |
return agreements
|
|
|
155 |
model_select_strategy_list=model_select_strategy_list,
|
156 |
corr_types=corr_types,
|
157 |
n_exps=n_exps if n_models_taken_list != [0] else 1,
|
|
|
158 |
)
|
159 |
|
160 |
+
holistic_scenarios = [
|
161 |
+
"arena_hard",
|
162 |
+
"mixeval",
|
163 |
+
"agieval",
|
164 |
+
"arc_c",
|
165 |
+
"alpacav1",
|
166 |
+
"alpacav2",
|
167 |
+
"alpacaeval2_lc",
|
168 |
+
"arena_elo",
|
169 |
+
"bbh",
|
170 |
+
"eq_benchv2",
|
171 |
+
"gpt4all",
|
172 |
+
"hugging_6",
|
173 |
+
"llmonitor",
|
174 |
+
"magi",
|
175 |
+
"mmlu",
|
176 |
+
"mt_bench",
|
177 |
+
"biggen_mwr",
|
178 |
+
"olmes_average",
|
179 |
+
"mmlu_pro",
|
180 |
+
]
|
181 |
+
holistic = Benchmark()
|
182 |
+
holistic.load_local_catalog()
|
183 |
+
holistic.df = holistic.df.query("scenario in @holistic_scenarios")
|
184 |
+
|
185 |
holistic.clear_repeated_scenarios()
|
186 |
holistic.add_aggragete(
|
187 |
new_col_name="aggregate",
|
|
|
190 |
min_scenario_for_models_to_appear_in_agg=5,
|
191 |
)
|
192 |
|
193 |
+
allbench = Benchmark()
|
194 |
+
allbench.load_local_catalog()
|
195 |
+
|
196 |
+
# allbench.df = allbench.df[~allbench.df["source"].str.contains("livebench")]
|
197 |
+
|
198 |
+
allbench.extend(my_benchmark)
|
199 |
allbench.df = allbench.df.drop(columns=["tag"])
|
200 |
allbench.clear_repeated_scenarios()
|
201 |
allbench.df = allbench.df.query("scenario not in @holistic_scenarios")
|
202 |
|
203 |
+
# allbench.df = allbench.df[~allbench.df["scenario"].str.contains("_mixed")]
|
204 |
+
# allbench.df = allbench.df[~allbench.df["scenario"].str.contains("agentbench")]
|
205 |
|
206 |
# st.dataframe(holistic.df.query('scenario=="aggregate"'))
|
207 |
|
|
|
211 |
|
212 |
# len(allbench.get_scenario_appearences_count().keys())
|
213 |
|
214 |
+
allbench.df.query('source=="BlueBench"').model.unique()
|
215 |
+
|
216 |
+
allbench.df.query('scenario=="aggregate"').model.unique()
|
217 |
+
|
218 |
agreements = tester.all_vs_all_agreement_testing(
|
219 |
allbench, single_source_scenario="aggregate"
|
220 |
)
|
|
|
230 |
model_select_strategy_list=[model_select_strategy],
|
231 |
corr_types=[corr_type],
|
232 |
n_exps=n_exps,
|
233 |
+
my_benchmark=my_benchmark,
|
234 |
)
|
235 |
|
236 |
+
if not my_benchmark.is_empty:
|
237 |
+
print()
|
238 |
+
|
239 |
reporter = Reporter()
|
240 |
z_scores = reporter.get_all_z_scores(agreements=agreements, aggragate_name="aggregate")
|
241 |
|
|
|
262 |
|
263 |
data = data[~data["Source"].str.contains("livebench")]
|
264 |
data = data[~data["Source"].str.contains("biggen")]
|
265 |
+
# data.drop(columns=["Source"], inplace=True)
|
266 |
+
data["Benchmark"] = data["Benchmark"].apply(lambda x: get_nice_benchmark_name(x))
|
267 |
+
|
268 |
|
269 |
# Apply coloring based on 'Z' valuesz
|
270 |
+
def highlight_uploaded_benchmark(row):
|
271 |
+
if row["Source"] == "Uploaded Benchmark":
|
272 |
+
return ["background-color: rgba(100,100,100,0.1)"] * len(row)
|
273 |
+
else:
|
274 |
+
return [""] * len(row)
|
275 |
+
|
276 |
+
|
277 |
+
styled_data = (
|
278 |
+
data.style.background_gradient(
|
279 |
+
subset=["Z Score"],
|
280 |
+
cmap="RdYlGn",
|
281 |
+
vmin=-data["Z Score"].abs().max(),
|
282 |
+
vmax=data["Z Score"].abs().max(),
|
283 |
+
)
|
284 |
+
.format(subset=["Z Score", corr_name, "p value of Corr."], formatter="{:.2}")
|
285 |
+
.apply(highlight_uploaded_benchmark, axis=1)
|
286 |
+
)
|
287 |
|
|
|
|
|
|
|
|
|
|
|
|
|
288 |
|
289 |
st.dataframe(
|
290 |
data=styled_data,
|