|
|
|
import streamlit as st |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
import time |
|
import os |
|
from PIL import Image, ImageColor |
|
from copy import deepcopy |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torchvision.transforms as transforms |
|
|
|
from src.models.modnet import MODNet |
|
from src.st_style import apply_prod_style |
|
|
|
|
|
|
|
MODEL = "./assets/modnet_photographic_portrait_matting.ckpt" |
|
|
|
|
|
def change_background(image, matte, background_alpha: float=1.0, background_hex: str="#000000"): |
|
""" |
|
image: PIL Image (RGBA) |
|
matte: PIL Image (grayscale, if 255 it is foreground) |
|
background_alpha: float |
|
background_hex: string |
|
""" |
|
img = deepcopy(image) |
|
if image.mode != "RGBA": |
|
img = img.convert("RGBA") |
|
|
|
background_color = ImageColor.getrgb(background_hex) |
|
background_alpha = int(255 * background_alpha) |
|
background = Image.new("RGBA", img.size, color=background_color + (background_alpha,)) |
|
background.paste(img, mask=matte) |
|
return background |
|
|
|
|
|
def matte(image): |
|
|
|
ref_size = 512 |
|
|
|
|
|
im_transform = transforms.Compose( |
|
[ |
|
transforms.ToTensor(), |
|
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) |
|
] |
|
) |
|
|
|
|
|
modnet = MODNet(backbone_pretrained=False) |
|
modnet = nn.DataParallel(modnet) |
|
|
|
if torch.cuda.is_available(): |
|
modnet = modnet.cuda() |
|
weights = torch.load(MODEL) |
|
else: |
|
weights = torch.load(MODEL, map_location=torch.device('cpu')) |
|
modnet.load_state_dict(weights) |
|
modnet.eval() |
|
|
|
|
|
im = deepcopy(image) |
|
|
|
|
|
im = np.asarray(im) |
|
if len(im.shape) == 2: |
|
im = im[:, :, None] |
|
if im.shape[2] == 1: |
|
im = np.repeat(im, 3, axis=2) |
|
elif im.shape[2] == 4: |
|
im = im[:, :, 0:3] |
|
|
|
|
|
im = Image.fromarray(im) |
|
im = im_transform(im) |
|
|
|
|
|
im = im[None, :, :, :] |
|
|
|
|
|
im_b, im_c, im_h, im_w = im.shape |
|
if max(im_h, im_w) < ref_size or min(im_h, im_w) > ref_size: |
|
if im_w >= im_h: |
|
im_rh = ref_size |
|
im_rw = int(im_w / im_h * ref_size) |
|
elif im_w < im_h: |
|
im_rw = ref_size |
|
im_rh = int(im_h / im_w * ref_size) |
|
else: |
|
im_rh = im_h |
|
im_rw = im_w |
|
|
|
im_rw = im_rw - im_rw % 32 |
|
im_rh = im_rh - im_rh % 32 |
|
im = F.interpolate(im, size=(im_rh, im_rw), mode='area') |
|
|
|
|
|
_, _, matte = modnet(im.cuda() if torch.cuda.is_available() else im, True) |
|
|
|
|
|
matte = F.interpolate(matte, size=(im_h, im_w), mode='area') |
|
matte = matte[0][0].data.cpu().numpy() |
|
return Image.fromarray(((matte * 255).astype('uint8')), mode='L') |