gguf-parser-web / main.py
phate334's picture
[fix] modify huggingface url
4688574
import json
import os
from pathlib import Path
import gradio as gr
from app.devices import Device
from app.models import GgufParser
from app.tables import get_estimate_df, get_gpus_df, get_model_info_df
from app.utils import cleanup_url
GGUF_PARSER_VERSION = os.getenv("GGUF_PARSER_VERSION", "v0.12.0")
gguf_parser = Path("gguf-parser-linux-amd64")
gguf_parser_url = f"https://github.com/gpustack/gguf-parser-go/releases/download/{GGUF_PARSER_VERSION}/{gguf_parser}"
DEFAULT_URL = "https://huggingface.co/phate334/Llama-3.1-8B-Instruct-Q4_K_M-GGUF/resolve/main/llama-3.1-8b-instruct-q4_k_m.gguf"
with open("devices.json", "r", encoding="utf-8") as f:
data = json.load(f)
devices = {key: Device(**value) for key, value in data.items()}
device_options = [
f"{key} (Memory: {value.memory_size}GB, FLOPS: {value.FLOPS}, Bandwidth: {value.memory_bandwidth}GB/s)"
for key, value in devices.items()
]
def process_url(url, context_length, device_selection):
try:
device_name = device_selection.split(" (")[0]
selected_device = devices[device_name]
url = cleanup_url(url)
res = os.popen(
f'./{gguf_parser} --ctx-size={context_length} -url {url} --device-metric "{selected_device.FLOPS};{selected_device.memory_bandwidth}GBps" --json'
).read()
parser_result = GgufParser.model_validate_json(res)
model_info = get_model_info_df(
parser_result.metadata, parser_result.architecture, parser_result.tokenizer
)
estimate_df = get_estimate_df(parser_result.estimate)
gpus_info_df = get_gpus_df(parser_result.estimate, device_name, selected_device)
return model_info, estimate_df, gpus_info_df
except Exception as e:
return e
if __name__ == "__main__":
if not gguf_parser.exists():
os.system(f"wget {gguf_parser_url}&&chmod +x {gguf_parser}")
with gr.Blocks(title="GGUF Parser") as iface:
gr.Markdown(
"This Space is a web GUI for the [gpustack/gguf-parser-go](https://github.com/gpustack/gguf-parser-go) package, designed for users who are not familiar with CLI. For more detailed output results, please consider using the original tool. If you find this GUI helpful, please give that a star."
)
url_input = gr.Textbox(
label="GGUF File URL", placeholder="Enter GGUF URL", value=DEFAULT_URL
)
context_length_input = gr.Number(label="Context Length", value=8192)
device_dropdown = gr.Dropdown(label="Select Device", choices=device_options)
submit_btn = gr.Button("Send")
submit_btn.click(
fn=process_url,
inputs=[url_input, context_length_input, device_dropdown],
outputs=[
gr.DataFrame(label="Model Info"),
gr.DataFrame(label="ESTIMATE"),
gr.DataFrame(label="GPUs INFO"),
],
)
iface.launch()