import json import os from pathlib import Path import gradio as gr import pandas as pd from app.devices import Device from app.models import GgufParser from app.tables import get_estimate_df, get_gpus_df, get_model_info_df GGUF_PARSER_VERSION = os.getenv("GGUF_PARSER_VERSION", "v0.12.0") gguf_parser = Path("gguf-parser-linux-amd64") gguf_parser_url = f"https://github.com/gpustack/gguf-parser-go/releases/download/{GGUF_PARSER_VERSION}/{gguf_parser}" DEFAULT_URL = "https://huggingface.co/phate334/Llama-3.1-8B-Instruct-Q4_K_M-GGUF/resolve/main/llama-3.1-8b-instruct-q4_k_m.gguf" with open("devices.json", "r", encoding="utf-8") as f: data = json.load(f) devices = {key: Device(**value) for key, value in data.items()} device_options = [ f"{key} (Memory: {value.memory_size}GB, Bandwidth: {value.memory_bandwidth}GB/s)" for key, value in devices.items() ] def process_url(url, context_length, device_selection): try: # 取得選擇的裝置鍵值 device_name = device_selection.split(" ")[0] selected_device = devices[device_name] res = os.popen( f'./{gguf_parser} --ctx-size={context_length} -url {url} --device-metric "{selected_device.FLOPS};{selected_device.memory_bandwidth}GBps" --json' ).read() parser_result = GgufParser.model_validate_json(res) model_info = get_model_info_df( parser_result.metadata, parser_result.architecture, parser_result.tokenizer ) estimate_df = get_estimate_df(parser_result.estimate) gpus_info_df = get_gpus_df(parser_result.estimate, device_name, selected_device) return model_info, estimate_df, gpus_info_df except Exception as e: return e if __name__ == "__main__": if not gguf_parser.exists(): os.system(f"wget {gguf_parser_url}&&chmod +x {gguf_parser}") with gr.Blocks(title="GGUF Parser") as iface: gr.Markdown( "This Space is a web GUI for the [gpustack/gguf-parser-go](https://github.com/gpustack/gguf-parser-go) package, designed for users who are not familiar with CLI. For more detailed output results, please consider using the original tool. If you find this GUI helpful, please give that a star." ) url_input = gr.Textbox( label="GGUF File URL", placeholder="Enter GGUF URL", value=DEFAULT_URL ) context_length = gr.Number(label="Context Length", value=8192) device_dropdown = gr.Dropdown(label="Select Device", choices=device_options) submit_btn = gr.Button("Send") submit_btn.click( fn=process_url, inputs=[url_input, context_length, device_dropdown], outputs=[ gr.DataFrame(label="Model Info"), gr.DataFrame(label="ESTIMATE"), gr.DataFrame(label="GPUs INFO"), ], ) iface.launch()