from aura_sr import AuraSR import gradio as gr import spaces class ZeroGPUAuraSR(AuraSR): @classmethod def from_pretrained(cls, model_id: str = "fal-ai/AuraSR", use_safetensors: bool = True): import json import torch from pathlib import Path from huggingface_hub import snapshot_download # Check if model_id is a local file if Path(model_id).is_file(): local_file = Path(model_id) if local_file.suffix == '.safetensors': use_safetensors = True elif local_file.suffix == '.ckpt': use_safetensors = False else: raise ValueError(f"Unsupported file format: {local_file.suffix}. Please use .safetensors or .ckpt files.") # For local files, we need to provide the config separately config_path = local_file.with_name('config.json') if not config_path.exists(): raise FileNotFoundError( f"Config file not found: {config_path}. " f"When loading from a local file, ensure that 'config.json' " f"is present in the same directory as '{local_file.name}'. " f"If you're trying to load a model from Hugging Face, " f"please provide the model ID instead of a file path." ) config = json.loads(config_path.read_text()) hf_model_path = local_file.parent else: hf_model_path = Path(snapshot_download(model_id)) config = json.loads((hf_model_path / "config.json").read_text()) model = cls(config) if use_safetensors: try: from safetensors.torch import load_file checkpoint = load_file(hf_model_path / "model.safetensors" if not Path(model_id).is_file() else model_id) except ImportError: raise ImportError( "The safetensors library is not installed. " "Please install it with `pip install safetensors` " "or use `use_safetensors=False` to load the model with PyTorch." ) else: checkpoint = torch.load(hf_model_path / "model.ckpt" if not Path(model_id).is_file() else model_id) model.upsampler.load_state_dict(checkpoint, strict=True) return model aura_sr = ZeroGPUAuraSR.from_pretrained("fal/AuraSR-v2") aura_sr_v1 = ZeroGPUAuraSR.from_pretrained("fal-ai/AuraSR") @spaces.GPU() def predict(img, model_selection): return {'v1': aura_sr_v1, 'v2': aura_sr}.get(model_selection).upscale_4x(img) demo = gr.Interface( predict, inputs=[gr.Image(), gr.Dropdown(value='v2', choices=['v1', 'v2'])], outputs=gr.Image() ) demo.launch()