pierreguillou
commited on
Commit
•
08d0375
1
Parent(s):
e2bf74f
Create functions.py
Browse files- files/functions.py +816 -0
files/functions.py
ADDED
@@ -0,0 +1,816 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import re
|
4 |
+
import string
|
5 |
+
import torch
|
6 |
+
|
7 |
+
from operator import itemgetter
|
8 |
+
import collections
|
9 |
+
|
10 |
+
import pypdf
|
11 |
+
from pypdf import PdfReader
|
12 |
+
from pypdf.errors import PdfReadError
|
13 |
+
|
14 |
+
import pdf2image
|
15 |
+
from pdf2image import convert_from_path
|
16 |
+
import langdetect
|
17 |
+
from langdetect import detect_langs
|
18 |
+
|
19 |
+
import pandas as pd
|
20 |
+
import numpy as np
|
21 |
+
import random
|
22 |
+
import tempfile
|
23 |
+
import itertools
|
24 |
+
|
25 |
+
from matplotlib import font_manager
|
26 |
+
from PIL import Image, ImageDraw, ImageFont
|
27 |
+
import cv2
|
28 |
+
|
29 |
+
# Tesseract
|
30 |
+
print(os.popen(f'cat /etc/debian_version').read())
|
31 |
+
print(os.popen(f'cat /etc/issue').read())
|
32 |
+
print(os.popen(f'apt search tesseract').read())
|
33 |
+
import pytesseract
|
34 |
+
|
35 |
+
## Key parameters
|
36 |
+
|
37 |
+
# categories colors
|
38 |
+
label2color = {
|
39 |
+
'Caption': 'brown',
|
40 |
+
'Footnote': 'orange',
|
41 |
+
'Formula': 'gray',
|
42 |
+
'List-item': 'yellow',
|
43 |
+
'Page-footer': 'red',
|
44 |
+
'Page-header': 'red',
|
45 |
+
'Picture': 'violet',
|
46 |
+
'Section-header': 'orange',
|
47 |
+
'Table': 'green',
|
48 |
+
'Text': 'blue',
|
49 |
+
'Title': 'pink'
|
50 |
+
}
|
51 |
+
|
52 |
+
# bounding boxes start and end of a sequence
|
53 |
+
cls_box = [0, 0, 0, 0]
|
54 |
+
sep_box = cls_box
|
55 |
+
|
56 |
+
# model
|
57 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
58 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
59 |
+
|
60 |
+
model_id = "pierreguillou/lilt-xlm-roberta-base-finetuned-with-DocLayNet-base-at-linelevel-ml384"
|
61 |
+
|
62 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
63 |
+
model = AutoModelForTokenClassification.from_pretrained(model_id);
|
64 |
+
model.to(device);
|
65 |
+
|
66 |
+
# get labels
|
67 |
+
id2label = model.config.id2label
|
68 |
+
label2id = model.config.label2id
|
69 |
+
num_labels = len(id2label)
|
70 |
+
|
71 |
+
# (tokenization) The maximum length of a feature (sequence)
|
72 |
+
if str(384) in model_id:
|
73 |
+
max_length = 384
|
74 |
+
elif str(512) in model_id:
|
75 |
+
max_length = 512
|
76 |
+
else:
|
77 |
+
print("Error with max_length of chunks!")
|
78 |
+
|
79 |
+
# (tokenization) overlap
|
80 |
+
doc_stride = 128 # The authorized overlap between two part of the context when splitting it is needed.
|
81 |
+
|
82 |
+
# max PDF page images that will be displayed
|
83 |
+
max_imgboxes = 3
|
84 |
+
examples_dir = 'files/'
|
85 |
+
image_wo_content = examples_dir + "wo_content.png" # image without content
|
86 |
+
pdf_blank = examples_dir + "blank.pdf" # blank PDF
|
87 |
+
image_blank = examples_dir + "blank.png" # blank image
|
88 |
+
|
89 |
+
## get langdetect2Tesseract dictionary
|
90 |
+
t = "files/languages_tesseract.csv"
|
91 |
+
l = "files/languages_iso.csv"
|
92 |
+
|
93 |
+
df_t = pd.read_csv(t)
|
94 |
+
df_l = pd.read_csv(l)
|
95 |
+
|
96 |
+
langs_t = df_t["Language"].to_list()
|
97 |
+
langs_t = [lang_t.lower().strip().translate(str.maketrans('', '', string.punctuation)) for lang_t in langs_t]
|
98 |
+
langs_l = df_l["Language"].to_list()
|
99 |
+
langs_l = [lang_l.lower().strip().translate(str.maketrans('', '', string.punctuation)) for lang_l in langs_l]
|
100 |
+
langscode_t = df_t["LangCode"].to_list()
|
101 |
+
langscode_l = df_l["LangCode"].to_list()
|
102 |
+
|
103 |
+
Tesseract2langdetect, langdetect2Tesseract = dict(), dict()
|
104 |
+
for lang_t, langcode_t in zip(langs_t,langscode_t):
|
105 |
+
try:
|
106 |
+
if lang_t == "Chinese - Simplified".lower().strip().translate(str.maketrans('', '', string.punctuation)): lang_t = "chinese"
|
107 |
+
index = langs_l.index(lang_t)
|
108 |
+
langcode_l = langscode_l[index]
|
109 |
+
Tesseract2langdetect[langcode_t] = langcode_l
|
110 |
+
except:
|
111 |
+
continue
|
112 |
+
|
113 |
+
langdetect2Tesseract = {v:k for k,v in Tesseract2langdetect.items()}
|
114 |
+
|
115 |
+
## General
|
116 |
+
|
117 |
+
# get text and bounding boxes from an image
|
118 |
+
# https://stackoverflow.com/questions/61347755/how-can-i-get-line-coordinates-that-readed-by-tesseract
|
119 |
+
# https://medium.com/geekculture/tesseract-ocr-understanding-the-contents-of-documents-beyond-their-text-a98704b7c655
|
120 |
+
def get_data(results, factor, conf_min=0):
|
121 |
+
|
122 |
+
data = {}
|
123 |
+
for i in range(len(results['line_num'])):
|
124 |
+
level = results['level'][i]
|
125 |
+
block_num = results['block_num'][i]
|
126 |
+
par_num = results['par_num'][i]
|
127 |
+
line_num = results['line_num'][i]
|
128 |
+
top, left = results['top'][i], results['left'][i]
|
129 |
+
width, height = results['width'][i], results['height'][i]
|
130 |
+
conf = results['conf'][i]
|
131 |
+
text = results['text'][i]
|
132 |
+
if not (text == '' or text.isspace()):
|
133 |
+
if conf >= conf_min:
|
134 |
+
tup = (text, left, top, width, height)
|
135 |
+
if block_num in list(data.keys()):
|
136 |
+
if par_num in list(data[block_num].keys()):
|
137 |
+
if line_num in list(data[block_num][par_num].keys()):
|
138 |
+
data[block_num][par_num][line_num].append(tup)
|
139 |
+
else:
|
140 |
+
data[block_num][par_num][line_num] = [tup]
|
141 |
+
else:
|
142 |
+
data[block_num][par_num] = {}
|
143 |
+
data[block_num][par_num][line_num] = [tup]
|
144 |
+
else:
|
145 |
+
data[block_num] = {}
|
146 |
+
data[block_num][par_num] = {}
|
147 |
+
data[block_num][par_num][line_num] = [tup]
|
148 |
+
|
149 |
+
# get paragraphs dicionnary with list of lines
|
150 |
+
par_data = {}
|
151 |
+
par_idx = 1
|
152 |
+
for _, b in data.items():
|
153 |
+
for _, p in b.items():
|
154 |
+
line_data = {}
|
155 |
+
line_idx = 1
|
156 |
+
for _, l in p.items():
|
157 |
+
line_data[line_idx] = l
|
158 |
+
line_idx += 1
|
159 |
+
par_data[par_idx] = line_data
|
160 |
+
par_idx += 1
|
161 |
+
|
162 |
+
# get lines of texts, grouped by paragraph
|
163 |
+
lines = list()
|
164 |
+
row_indexes = list()
|
165 |
+
row_index = 0
|
166 |
+
for _,par in par_data.items():
|
167 |
+
count_lines = 0
|
168 |
+
for _,line in par.items():
|
169 |
+
if count_lines == 0: row_indexes.append(row_index)
|
170 |
+
line_text = ' '.join([item[0] for item in line])
|
171 |
+
lines.append(line_text)
|
172 |
+
count_lines += 1
|
173 |
+
row_index += 1
|
174 |
+
# lines.append("\n")
|
175 |
+
row_index += 1
|
176 |
+
# lines = lines[:-1]
|
177 |
+
|
178 |
+
# get paragraphes boxes (par_boxes)
|
179 |
+
# get lines boxes (line_boxes)
|
180 |
+
par_boxes = list()
|
181 |
+
par_idx = 1
|
182 |
+
line_boxes = list()
|
183 |
+
line_idx = 1
|
184 |
+
for _, par in par_data.items():
|
185 |
+
xmins, ymins, xmaxs, ymaxs = list(), list(), list(), list()
|
186 |
+
for _, line in par.items():
|
187 |
+
xmin, ymin = line[0][1], line[0][2]
|
188 |
+
xmax, ymax = (line[-1][1] + line[-1][3]), (line[-1][2] + line[-1][4])
|
189 |
+
line_boxes.append([int(xmin/factor), int(ymin/factor), int(xmax/factor), int(ymax/factor)])
|
190 |
+
xmins.append(xmin)
|
191 |
+
ymins.append(ymin)
|
192 |
+
xmaxs.append(xmax)
|
193 |
+
ymaxs.append(ymax)
|
194 |
+
line_idx += 1
|
195 |
+
xmin, ymin, xmax, ymax = min(xmins), min(ymins), max(xmaxs), max(ymaxs)
|
196 |
+
par_boxes.append([int(xmin/factor), int(ymin/factor), int(xmax/factor), int(ymax/factor)])
|
197 |
+
par_idx += 1
|
198 |
+
|
199 |
+
return lines, row_indexes, par_boxes, line_boxes #data, par_data #
|
200 |
+
|
201 |
+
# rescale image to get 300dpi
|
202 |
+
def set_image_dpi_resize(image):
|
203 |
+
"""
|
204 |
+
Rescaling image to 300dpi while resizing
|
205 |
+
:param image: An image
|
206 |
+
:return: A rescaled image
|
207 |
+
"""
|
208 |
+
length_x, width_y = image.size
|
209 |
+
factor = min(1, float(1024.0 / length_x))
|
210 |
+
size = int(factor * length_x), int(factor * width_y)
|
211 |
+
image_resize = image.resize(size, Image.Resampling.LANCZOS)
|
212 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='1.png')
|
213 |
+
temp_filename = temp_file.name
|
214 |
+
image_resize.save(temp_filename, dpi=(300, 300))
|
215 |
+
return factor, temp_filename
|
216 |
+
|
217 |
+
# it is important that each bounding box should be in (upper left, lower right) format.
|
218 |
+
# source: https://github.com/NielsRogge/Transformers-Tutorials/issues/129
|
219 |
+
def upperleft_to_lowerright(bbox):
|
220 |
+
x0, y0, x1, y1 = tuple(bbox)
|
221 |
+
if bbox[2] < bbox[0]:
|
222 |
+
x0 = bbox[2]
|
223 |
+
x1 = bbox[0]
|
224 |
+
if bbox[3] < bbox[1]:
|
225 |
+
y0 = bbox[3]
|
226 |
+
y1 = bbox[1]
|
227 |
+
return [x0, y0, x1, y1]
|
228 |
+
|
229 |
+
# convert boundings boxes (left, top, width, height) format to (left, top, left+widght, top+height) format.
|
230 |
+
def convert_box(bbox):
|
231 |
+
x, y, w, h = tuple(bbox) # the row comes in (left, top, width, height) format
|
232 |
+
return [x, y, x+w, y+h] # we turn it into (left, top, left+widght, top+height) to get the actual box
|
233 |
+
|
234 |
+
# LiLT model gets 1000x10000 pixels images
|
235 |
+
def normalize_box(bbox, width, height):
|
236 |
+
return [
|
237 |
+
int(1000 * (bbox[0] / width)),
|
238 |
+
int(1000 * (bbox[1] / height)),
|
239 |
+
int(1000 * (bbox[2] / width)),
|
240 |
+
int(1000 * (bbox[3] / height)),
|
241 |
+
]
|
242 |
+
|
243 |
+
# LiLT model gets 1000x10000 pixels images
|
244 |
+
def denormalize_box(bbox, width, height):
|
245 |
+
return [
|
246 |
+
int(width * (bbox[0] / 1000)),
|
247 |
+
int(height * (bbox[1] / 1000)),
|
248 |
+
int(width* (bbox[2] / 1000)),
|
249 |
+
int(height * (bbox[3] / 1000)),
|
250 |
+
]
|
251 |
+
|
252 |
+
# get back original size
|
253 |
+
def original_box(box, original_width, original_height, coco_width, coco_height):
|
254 |
+
return [
|
255 |
+
int(original_width * (box[0] / coco_width)),
|
256 |
+
int(original_height * (box[1] / coco_height)),
|
257 |
+
int(original_width * (box[2] / coco_width)),
|
258 |
+
int(original_height* (box[3] / coco_height)),
|
259 |
+
]
|
260 |
+
|
261 |
+
def get_blocks(bboxes_block, categories, texts):
|
262 |
+
# get list of unique block boxes
|
263 |
+
bbox_block_dict, bboxes_block_list, bbox_block_prec = dict(), list(), list()
|
264 |
+
for count_block, bbox_block in enumerate(bboxes_block):
|
265 |
+
if bbox_block != bbox_block_prec:
|
266 |
+
bbox_block_indexes = [i for i, bbox in enumerate(bboxes_block) if bbox == bbox_block]
|
267 |
+
bbox_block_dict[count_block] = bbox_block_indexes
|
268 |
+
bboxes_block_list.append(bbox_block)
|
269 |
+
bbox_block_prec = bbox_block
|
270 |
+
|
271 |
+
# get list of categories and texts by unique block boxes
|
272 |
+
category_block_list, text_block_list = list(), list()
|
273 |
+
for bbox_block in bboxes_block_list:
|
274 |
+
count_block = bboxes_block.index(bbox_block)
|
275 |
+
bbox_block_indexes = bbox_block_dict[count_block]
|
276 |
+
category_block = np.array(categories, dtype=object)[bbox_block_indexes].tolist()[0]
|
277 |
+
category_block_list.append(category_block)
|
278 |
+
text_block = np.array(texts, dtype=object)[bbox_block_indexes].tolist()
|
279 |
+
text_block = [text.replace("\n","").strip() for text in text_block]
|
280 |
+
if id2label[category_block] == "Text" or id2label[category_block] == "Caption" or id2label[category_block] == "Footnote":
|
281 |
+
text_block = ' '.join(text_block)
|
282 |
+
else:
|
283 |
+
text_block = '\n'.join(text_block)
|
284 |
+
text_block_list.append(text_block)
|
285 |
+
|
286 |
+
return bboxes_block_list, category_block_list, text_block_list
|
287 |
+
|
288 |
+
# function to sort bounding boxes
|
289 |
+
def get_sorted_boxes(bboxes):
|
290 |
+
|
291 |
+
# sort by y from page top to bottom
|
292 |
+
sorted_bboxes = sorted(bboxes, key=itemgetter(1), reverse=False)
|
293 |
+
y_list = [bbox[1] for bbox in sorted_bboxes]
|
294 |
+
|
295 |
+
# sort by x from page left to right when boxes with same y
|
296 |
+
if len(list(set(y_list))) != len(y_list):
|
297 |
+
y_list_duplicates_indexes = dict()
|
298 |
+
y_list_duplicates = [item for item, count in collections.Counter(y_list).items() if count > 1]
|
299 |
+
for item in y_list_duplicates:
|
300 |
+
y_list_duplicates_indexes[item] = [i for i, e in enumerate(y_list) if e == item]
|
301 |
+
bbox_list_y_duplicates = sorted(np.array(sorted_bboxes, dtype=object)[y_list_duplicates_indexes[item]].tolist(), key=itemgetter(0), reverse=False)
|
302 |
+
np_array_bboxes = np.array(sorted_bboxes)
|
303 |
+
np_array_bboxes[y_list_duplicates_indexes[item]] = np.array(bbox_list_y_duplicates)
|
304 |
+
sorted_bboxes = np_array_bboxes.tolist()
|
305 |
+
|
306 |
+
return sorted_bboxes
|
307 |
+
|
308 |
+
# sort data from y = 0 to end of page (and after, x=0 to end of page when necessary)
|
309 |
+
def sort_data(bboxes, categories, texts):
|
310 |
+
|
311 |
+
sorted_bboxes = get_sorted_boxes(bboxes)
|
312 |
+
sorted_bboxes_indexes = [bboxes.index(bbox) for bbox in sorted_bboxes]
|
313 |
+
sorted_categories = np.array(categories, dtype=object)[sorted_bboxes_indexes].tolist()
|
314 |
+
sorted_texts = np.array(texts, dtype=object)[sorted_bboxes_indexes].tolist()
|
315 |
+
|
316 |
+
return sorted_bboxes, sorted_categories, sorted_texts
|
317 |
+
|
318 |
+
# sort data from y = 0 to end of page (and after, x=0 to end of page when necessary)
|
319 |
+
def sort_data_wo_labels(bboxes, texts):
|
320 |
+
|
321 |
+
sorted_bboxes = get_sorted_boxes(bboxes)
|
322 |
+
sorted_bboxes_indexes = [bboxes.index(bbox) for bbox in sorted_bboxes]
|
323 |
+
sorted_texts = np.array(texts, dtype=object)[sorted_bboxes_indexes].tolist()
|
324 |
+
|
325 |
+
return sorted_bboxes, sorted_texts
|
326 |
+
|
327 |
+
## PDF processing
|
328 |
+
|
329 |
+
# get filename and images of PDF pages
|
330 |
+
def pdf_to_images(uploaded_pdf):
|
331 |
+
|
332 |
+
# Check if None object
|
333 |
+
if uploaded_pdf is None:
|
334 |
+
path_to_file = pdf_blank
|
335 |
+
filename = path_to_file.replace(examples_dir,"")
|
336 |
+
msg = "Invalid PDF file."
|
337 |
+
images = [Image.open(image_blank)]
|
338 |
+
else:
|
339 |
+
# path to the uploaded PDF
|
340 |
+
path_to_file = uploaded_pdf.name
|
341 |
+
filename = path_to_file.replace("/tmp/","")
|
342 |
+
|
343 |
+
try:
|
344 |
+
PdfReader(path_to_file)
|
345 |
+
except PdfReadError:
|
346 |
+
path_to_file = pdf_blank
|
347 |
+
filename = path_to_file.replace(examples_dir,"")
|
348 |
+
msg = "invalid PDF file."
|
349 |
+
images = [Image.open(image_blank)]
|
350 |
+
else:
|
351 |
+
try:
|
352 |
+
images = convert_from_path(path_to_file, last_page=max_imgboxes)
|
353 |
+
num_imgs = len(images)
|
354 |
+
msg = f'The PDF "{filename}" was converted into {num_imgs} images.'
|
355 |
+
except:
|
356 |
+
msg = f'Error with the PDF "{filename}": it was not converted into images.'
|
357 |
+
images = [Image.open(image_wo_content)]
|
358 |
+
|
359 |
+
return filename, msg, images
|
360 |
+
|
361 |
+
# Extraction of image data (text and bounding boxes)
|
362 |
+
def extraction_data_from_image(images):
|
363 |
+
|
364 |
+
num_imgs = len(images)
|
365 |
+
|
366 |
+
if num_imgs > 0:
|
367 |
+
|
368 |
+
# https://pyimagesearch.com/2021/11/15/tesseract-page-segmentation-modes-psms-explained-how-to-improve-your-ocr-accuracy/
|
369 |
+
custom_config = r'--oem 3 --psm 3 -l eng+por+spa' # default config PyTesseract: --oem 3 --psm 3 -l eng+deu+fra+jpn+por+spa+rus+hin+chi_sim
|
370 |
+
# custom_config = r'--oem 3 --psm 3 -l eng' # default config PyTesseract: --oem 3 --psm 3
|
371 |
+
results, lines, row_indexes, par_boxes, line_boxes = dict(), dict(), dict(), dict(), dict()
|
372 |
+
images_ids_list, lines_list, par_boxes_list, line_boxes_list, images_list, page_no_list, num_pages_list = list(), list(), list(), list(), list(), list(), list()
|
373 |
+
|
374 |
+
try:
|
375 |
+
for i,image in enumerate(images):
|
376 |
+
# image preprocessing
|
377 |
+
# https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_thresholding/py_thresholding.html
|
378 |
+
img = image.copy()
|
379 |
+
factor, path_to_img = set_image_dpi_resize(img) # Rescaling to 300dpi
|
380 |
+
img = Image.open(path_to_img)
|
381 |
+
img = np.array(img, dtype='uint8') # convert PIL to cv2
|
382 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # gray scale image
|
383 |
+
ret,img = cv2.threshold(img,127,255,cv2.THRESH_BINARY)
|
384 |
+
# img_filepath = f"img{i}.png"
|
385 |
+
# img.save(img_filepath)
|
386 |
+
# cv2.imwrite(img_filepath, img)
|
387 |
+
|
388 |
+
# OCR PyTesseract | get langs of page
|
389 |
+
txt = pytesseract.image_to_string(img, config=custom_config)
|
390 |
+
|
391 |
+
# txt = os.popen(f'tesseract {img_filepath} - {custom_config}').read()
|
392 |
+
|
393 |
+
try:
|
394 |
+
langs = detect_langs(txt)
|
395 |
+
langs = [langdetect2Tesseract[langs[i].lang] for i in range(len(langs))]
|
396 |
+
langs_string = '+'.join(langs)
|
397 |
+
except:
|
398 |
+
langs_string = "eng"
|
399 |
+
langs_string += '+osd'
|
400 |
+
custom_config = f'--oem 3 --psm 3 -l {langs_string} tsv' # default config PyTesseract: --oem 3 --psm 3
|
401 |
+
# print("langs", i, "-", langs_string)
|
402 |
+
|
403 |
+
# OCR PyTesseract | get data
|
404 |
+
results[i] = pytesseract.image_to_data(img, config=custom_config, output_type=pytesseract.Output.DICT)
|
405 |
+
|
406 |
+
# results[i] = os.popen(f'tesseract {img_filepath} - {custom_config}').read()
|
407 |
+
# print("results[i].keys()", i, "-",results[i].keys())
|
408 |
+
|
409 |
+
# print("factor", factor)
|
410 |
+
lines[i], row_indexes[i], par_boxes[i], line_boxes[i] = get_data(results[i], factor, conf_min=0)
|
411 |
+
lines_list.append(lines[i])
|
412 |
+
par_boxes_list.append(par_boxes[i])
|
413 |
+
line_boxes_list.append(line_boxes[i])
|
414 |
+
images_ids_list.append(i)
|
415 |
+
images_list.append(images[i])
|
416 |
+
page_no_list.append(i)
|
417 |
+
num_pages_list.append(num_imgs)
|
418 |
+
# print("i - lines[i], row_indexes[i], par_boxes[i], line_boxes[i]",i,"-",lines[i], row_indexes[i], par_boxes[i], line_boxes[i])
|
419 |
+
# print("***************************************************************")
|
420 |
+
|
421 |
+
except:
|
422 |
+
print(f"There was an error within the extraction of PDF text by the OCR!")
|
423 |
+
else:
|
424 |
+
from datasets import Dataset
|
425 |
+
dataset = Dataset.from_dict({"images_ids": images_ids_list, "images": images_list, "page_no": page_no_list, "num_pages": num_pages_list, "texts": lines_list, "bboxes_line": line_boxes_list})
|
426 |
+
|
427 |
+
print(f"The text data was successfully extracted by the OCR!")
|
428 |
+
|
429 |
+
return dataset, lines, row_indexes, par_boxes, line_boxes
|
430 |
+
|
431 |
+
## Inference
|
432 |
+
|
433 |
+
# def prepare_inference_features(example, cls_box=cls_box, sep_box=sep_box):
|
434 |
+
def prepare_inference_features(example):
|
435 |
+
|
436 |
+
images_ids_list, chunks_ids_list, input_ids_list, attention_mask_list, bb_list = list(), list(), list(), list(), list()
|
437 |
+
|
438 |
+
# get batch
|
439 |
+
# batch_page_hash = example["page_hash"]
|
440 |
+
batch_images_ids = example["images_ids"]
|
441 |
+
batch_images = example["images"]
|
442 |
+
batch_bboxes_line = example["bboxes_line"]
|
443 |
+
batch_texts = example["texts"]
|
444 |
+
batch_images_size = [image.size for image in batch_images]
|
445 |
+
|
446 |
+
batch_width, batch_height = [image_size[0] for image_size in batch_images_size], [image_size[1] for image_size in batch_images_size]
|
447 |
+
|
448 |
+
# add a dimension if not a batch but only one image
|
449 |
+
if not isinstance(batch_images_ids, list):
|
450 |
+
batch_images_ids = [batch_images_ids]
|
451 |
+
batch_images = [batch_images]
|
452 |
+
batch_bboxes_line = [batch_bboxes_line]
|
453 |
+
batch_texts = [batch_texts]
|
454 |
+
batch_width, batch_height = [batch_width], [batch_height]
|
455 |
+
|
456 |
+
# process all images of the batch
|
457 |
+
for num_batch, (image_id, boxes, texts, width, height) in enumerate(zip(batch_images_ids, batch_bboxes_line, batch_texts, batch_width, batch_height)):
|
458 |
+
tokens_list = []
|
459 |
+
bboxes_list = []
|
460 |
+
|
461 |
+
# add a dimension if only on image
|
462 |
+
if not isinstance(texts, list):
|
463 |
+
texts, boxes = [texts], [boxes]
|
464 |
+
|
465 |
+
# convert boxes to original
|
466 |
+
normalize_bboxes_line = [normalize_box(upperleft_to_lowerright(box), width, height) for box in boxes]
|
467 |
+
|
468 |
+
# sort boxes with texts
|
469 |
+
# we want sorted lists from top to bottom of the image
|
470 |
+
boxes, texts = sort_data_wo_labels(normalize_bboxes_line, texts)
|
471 |
+
|
472 |
+
count = 0
|
473 |
+
for box, text in zip(boxes, texts):
|
474 |
+
tokens = tokenizer.tokenize(text)
|
475 |
+
num_tokens = len(tokens) # get number of tokens
|
476 |
+
tokens_list.extend(tokens)
|
477 |
+
|
478 |
+
bboxes_list.extend([box] * num_tokens) # number of boxes must be the same as the number of tokens
|
479 |
+
|
480 |
+
# use of return_overflowing_tokens=True / stride=doc_stride
|
481 |
+
# to get parts of image with overlap
|
482 |
+
# source: https://huggingface.co/course/chapter6/3b?fw=tf#handling-long-contexts
|
483 |
+
encodings = tokenizer(" ".join(texts),
|
484 |
+
truncation=True,
|
485 |
+
padding="max_length",
|
486 |
+
max_length=max_length,
|
487 |
+
stride=doc_stride,
|
488 |
+
return_overflowing_tokens=True,
|
489 |
+
return_offsets_mapping=True
|
490 |
+
)
|
491 |
+
|
492 |
+
otsm = encodings.pop("overflow_to_sample_mapping")
|
493 |
+
offset_mapping = encodings.pop("offset_mapping")
|
494 |
+
|
495 |
+
# Let's label those examples and get their boxes
|
496 |
+
sequence_length_prev = 0
|
497 |
+
for i, offsets in enumerate(offset_mapping):
|
498 |
+
# truncate tokens, boxes and labels based on length of chunk - 2 (special tokens <s> and </s>)
|
499 |
+
sequence_length = len(encodings.input_ids[i]) - 2
|
500 |
+
if i == 0: start = 0
|
501 |
+
else: start += sequence_length_prev - doc_stride
|
502 |
+
end = start + sequence_length
|
503 |
+
sequence_length_prev = sequence_length
|
504 |
+
|
505 |
+
# get tokens, boxes and labels of this image chunk
|
506 |
+
bb = [cls_box] + bboxes_list[start:end] + [sep_box]
|
507 |
+
|
508 |
+
# as the last chunk can have a length < max_length
|
509 |
+
# we must to add [tokenizer.pad_token] (tokens), [sep_box] (boxes) and [-100] (labels)
|
510 |
+
if len(bb) < max_length:
|
511 |
+
bb = bb + [sep_box] * (max_length - len(bb))
|
512 |
+
|
513 |
+
# append results
|
514 |
+
input_ids_list.append(encodings["input_ids"][i])
|
515 |
+
attention_mask_list.append(encodings["attention_mask"][i])
|
516 |
+
bb_list.append(bb)
|
517 |
+
images_ids_list.append(image_id)
|
518 |
+
chunks_ids_list.append(i)
|
519 |
+
|
520 |
+
return {
|
521 |
+
"images_ids": images_ids_list,
|
522 |
+
"chunk_ids": chunks_ids_list,
|
523 |
+
"input_ids": input_ids_list,
|
524 |
+
"attention_mask": attention_mask_list,
|
525 |
+
"normalized_bboxes": bb_list,
|
526 |
+
}
|
527 |
+
|
528 |
+
from torch.utils.data import Dataset
|
529 |
+
|
530 |
+
class CustomDataset(Dataset):
|
531 |
+
def __init__(self, dataset, tokenizer):
|
532 |
+
self.dataset = dataset
|
533 |
+
self.tokenizer = tokenizer
|
534 |
+
|
535 |
+
def __len__(self):
|
536 |
+
return len(self.dataset)
|
537 |
+
|
538 |
+
def __getitem__(self, idx):
|
539 |
+
# get item
|
540 |
+
example = self.dataset[idx]
|
541 |
+
encoding = dict()
|
542 |
+
encoding["images_ids"] = example["images_ids"]
|
543 |
+
encoding["chunk_ids"] = example["chunk_ids"]
|
544 |
+
encoding["input_ids"] = example["input_ids"]
|
545 |
+
encoding["attention_mask"] = example["attention_mask"]
|
546 |
+
encoding["bbox"] = example["normalized_bboxes"]
|
547 |
+
# encoding["labels"] = example["labels"]
|
548 |
+
|
549 |
+
return encoding
|
550 |
+
|
551 |
+
import torch.nn.functional as F
|
552 |
+
|
553 |
+
# get predictions at token level
|
554 |
+
def predictions_token_level(images, custom_encoded_dataset):
|
555 |
+
|
556 |
+
num_imgs = len(images)
|
557 |
+
if num_imgs > 0:
|
558 |
+
|
559 |
+
chunk_ids, input_ids, bboxes, outputs, token_predictions = dict(), dict(), dict(), dict(), dict()
|
560 |
+
images_ids_list = list()
|
561 |
+
|
562 |
+
for i,encoding in enumerate(custom_encoded_dataset):
|
563 |
+
|
564 |
+
# get custom encoded data
|
565 |
+
image_id = encoding['images_ids']
|
566 |
+
chunk_id = encoding['chunk_ids']
|
567 |
+
input_id = torch.tensor(encoding['input_ids'])[None]
|
568 |
+
attention_mask = torch.tensor(encoding['attention_mask'])[None]
|
569 |
+
bbox = torch.tensor(encoding['bbox'])[None]
|
570 |
+
|
571 |
+
# save data in dictionnaries
|
572 |
+
if image_id not in images_ids_list: images_ids_list.append(image_id)
|
573 |
+
|
574 |
+
if image_id in chunk_ids: chunk_ids[image_id].append(chunk_id)
|
575 |
+
else: chunk_ids[image_id] = [chunk_id]
|
576 |
+
|
577 |
+
if image_id in input_ids: input_ids[image_id].append(input_id)
|
578 |
+
else: input_ids[image_id] = [input_id]
|
579 |
+
|
580 |
+
if image_id in bboxes: bboxes[image_id].append(bbox)
|
581 |
+
else: bboxes[image_id] = [bbox]
|
582 |
+
|
583 |
+
# get prediction with forward pass
|
584 |
+
with torch.no_grad():
|
585 |
+
output = model(
|
586 |
+
input_ids=input_id,
|
587 |
+
attention_mask=attention_mask,
|
588 |
+
bbox=bbox
|
589 |
+
)
|
590 |
+
|
591 |
+
# save probabilities of predictions in dictionnary
|
592 |
+
if image_id in outputs: outputs[image_id].append(F.softmax(output.logits.squeeze(), dim=-1))
|
593 |
+
else: outputs[image_id] = [F.softmax(output.logits.squeeze(), dim=-1)]
|
594 |
+
|
595 |
+
return outputs, images_ids_list, chunk_ids, input_ids, bboxes
|
596 |
+
|
597 |
+
else:
|
598 |
+
print("An error occurred while getting predictions!")
|
599 |
+
|
600 |
+
from functools import reduce
|
601 |
+
|
602 |
+
# Get predictions (line level)
|
603 |
+
def predictions_line_level(dataset, outputs, images_ids_list, chunk_ids, input_ids, bboxes):
|
604 |
+
|
605 |
+
ten_probs_dict, ten_input_ids_dict, ten_bboxes_dict = dict(), dict(), dict()
|
606 |
+
bboxes_list_dict, input_ids_dict_dict, probs_dict_dict, df = dict(), dict(), dict(), dict()
|
607 |
+
|
608 |
+
if len(images_ids_list) > 0:
|
609 |
+
|
610 |
+
for i, image_id in enumerate(images_ids_list):
|
611 |
+
|
612 |
+
# get image information
|
613 |
+
images_list = dataset.filter(lambda example: example["images_ids"] == image_id)["images"]
|
614 |
+
image = images_list[0]
|
615 |
+
width, height = image.size
|
616 |
+
|
617 |
+
# get data
|
618 |
+
chunk_ids_list = chunk_ids[image_id]
|
619 |
+
outputs_list = outputs[image_id]
|
620 |
+
input_ids_list = input_ids[image_id]
|
621 |
+
bboxes_list = bboxes[image_id]
|
622 |
+
|
623 |
+
# create zeros tensors
|
624 |
+
ten_probs = torch.zeros((outputs_list[0].shape[0] - 2)*len(outputs_list), outputs_list[0].shape[1])
|
625 |
+
ten_input_ids = torch.ones(size=(1, (outputs_list[0].shape[0] - 2)*len(outputs_list)), dtype =int)
|
626 |
+
ten_bboxes = torch.zeros(size=(1, (outputs_list[0].shape[0] - 2)*len(outputs_list), 4), dtype =int)
|
627 |
+
|
628 |
+
if len(outputs_list) > 1:
|
629 |
+
|
630 |
+
for num_output, (output, input_id, bbox) in enumerate(zip(outputs_list, input_ids_list, bboxes_list)):
|
631 |
+
start = num_output*(max_length - 2) - max(0,num_output)*doc_stride
|
632 |
+
end = start + (max_length - 2)
|
633 |
+
|
634 |
+
if num_output == 0:
|
635 |
+
ten_probs[start:end,:] += output[1:-1]
|
636 |
+
ten_input_ids[:,start:end] = input_id[:,1:-1]
|
637 |
+
ten_bboxes[:,start:end,:] = bbox[:,1:-1,:]
|
638 |
+
else:
|
639 |
+
ten_probs[start:start + doc_stride,:] += output[1:1 + doc_stride]
|
640 |
+
ten_probs[start:start + doc_stride,:] = ten_probs[start:start + doc_stride,:] * 0.5
|
641 |
+
ten_probs[start + doc_stride:end,:] += output[1 + doc_stride:-1]
|
642 |
+
|
643 |
+
ten_input_ids[:,start:start + doc_stride] = input_id[:,1:1 + doc_stride]
|
644 |
+
ten_input_ids[:,start + doc_stride:end] = input_id[:,1 + doc_stride:-1]
|
645 |
+
|
646 |
+
ten_bboxes[:,start:start + doc_stride,:] = bbox[:,1:1 + doc_stride,:]
|
647 |
+
ten_bboxes[:,start + doc_stride:end,:] = bbox[:,1 + doc_stride:-1,:]
|
648 |
+
|
649 |
+
else:
|
650 |
+
ten_probs += outputs_list[0][1:-1]
|
651 |
+
ten_input_ids = input_ids_list[0][:,1:-1]
|
652 |
+
ten_bboxes = bboxes_list[0][:,1:-1]
|
653 |
+
|
654 |
+
ten_probs_list, ten_input_ids_list, ten_bboxes_list = ten_probs.tolist(), ten_input_ids.tolist()[0], ten_bboxes.tolist()[0]
|
655 |
+
bboxes_list = list()
|
656 |
+
input_ids_dict, probs_dict = dict(), dict()
|
657 |
+
bbox_prev = [-100, -100, -100, -100]
|
658 |
+
for probs, input_id, bbox in zip(ten_probs_list, ten_input_ids_list, ten_bboxes_list):
|
659 |
+
bbox = denormalize_box(bbox, width, height)
|
660 |
+
if bbox != bbox_prev and bbox != cls_box:
|
661 |
+
bboxes_list.append(bbox)
|
662 |
+
input_ids_dict[str(bbox)] = [input_id]
|
663 |
+
probs_dict[str(bbox)] = [probs]
|
664 |
+
else:
|
665 |
+
if bbox != cls_box:
|
666 |
+
input_ids_dict[str(bbox)].append(input_id)
|
667 |
+
probs_dict[str(bbox)].append(probs)
|
668 |
+
bbox_prev = bbox
|
669 |
+
|
670 |
+
probs_bbox = dict()
|
671 |
+
for i,bbox in enumerate(bboxes_list):
|
672 |
+
probs = probs_dict[str(bbox)]
|
673 |
+
probs = np.array(probs).T.tolist()
|
674 |
+
|
675 |
+
probs_label = list()
|
676 |
+
for probs_list in probs:
|
677 |
+
prob_label = reduce(lambda x, y: x*y, probs_list)
|
678 |
+
probs_label.append(prob_label)
|
679 |
+
max_value = max(probs_label)
|
680 |
+
max_index = probs_label.index(max_value)
|
681 |
+
probs_bbox[str(bbox)] = max_index
|
682 |
+
|
683 |
+
bboxes_list_dict[image_id] = bboxes_list
|
684 |
+
input_ids_dict_dict[image_id] = input_ids_dict
|
685 |
+
probs_dict_dict[image_id] = probs_bbox
|
686 |
+
|
687 |
+
df[image_id] = pd.DataFrame()
|
688 |
+
df[image_id]["bboxes"] = bboxes_list
|
689 |
+
df[image_id]["texts"] = [tokenizer.decode(input_ids_dict[str(bbox)]) for bbox in bboxes_list]
|
690 |
+
df[image_id]["labels"] = [id2label[probs_bbox[str(bbox)]] for bbox in bboxes_list]
|
691 |
+
|
692 |
+
return probs_bbox, bboxes_list_dict, input_ids_dict_dict, probs_dict_dict, df
|
693 |
+
|
694 |
+
else:
|
695 |
+
print("An error occurred while getting predictions!")
|
696 |
+
|
697 |
+
# Get labeled images with lines bounding boxes
|
698 |
+
def get_labeled_images(dataset, images_ids_list, bboxes_list_dict, probs_dict_dict):
|
699 |
+
|
700 |
+
labeled_images = list()
|
701 |
+
|
702 |
+
for i, image_id in enumerate(images_ids_list):
|
703 |
+
|
704 |
+
# get image
|
705 |
+
images_list = dataset.filter(lambda example: example["images_ids"] == image_id)["images"]
|
706 |
+
image = images_list[0]
|
707 |
+
width, height = image.size
|
708 |
+
|
709 |
+
# get predicted boxes and labels
|
710 |
+
bboxes_list = bboxes_list_dict[image_id]
|
711 |
+
probs_bbox = probs_dict_dict[image_id]
|
712 |
+
|
713 |
+
draw = ImageDraw.Draw(image)
|
714 |
+
# https://stackoverflow.com/questions/66274858/choosing-a-pil-imagefont-by-font-name-rather-than-filename-and-cross-platform-f
|
715 |
+
font = font_manager.FontProperties(family='sans-serif', weight='bold')
|
716 |
+
font_file = font_manager.findfont(font)
|
717 |
+
font_size = 30
|
718 |
+
font = ImageFont.truetype(font_file, font_size)
|
719 |
+
|
720 |
+
for bbox in bboxes_list:
|
721 |
+
predicted_label = id2label[probs_bbox[str(bbox)]]
|
722 |
+
draw.rectangle(bbox, outline=label2color[predicted_label])
|
723 |
+
draw.text((bbox[0] + 10, bbox[1] - font_size), text=predicted_label, fill=label2color[predicted_label], font=font)
|
724 |
+
|
725 |
+
labeled_images.append(image)
|
726 |
+
|
727 |
+
return labeled_images
|
728 |
+
|
729 |
+
# get data of encoded chunk
|
730 |
+
def get_encoded_chunk_inference(index_chunk=None):
|
731 |
+
|
732 |
+
# get datasets
|
733 |
+
example = dataset
|
734 |
+
encoded_example = encoded_dataset
|
735 |
+
|
736 |
+
# get randomly a document in dataset
|
737 |
+
if index_chunk == None: index_chunk = random.randint(0, len(encoded_example)-1)
|
738 |
+
encoded_example = encoded_example[index_chunk]
|
739 |
+
encoded_image_ids = encoded_example["images_ids"]
|
740 |
+
|
741 |
+
# get the image
|
742 |
+
example = example.filter(lambda example: example["images_ids"] == encoded_image_ids)[0]
|
743 |
+
image = example["images"] # original image
|
744 |
+
width, height = image.size
|
745 |
+
page_no = example["page_no"]
|
746 |
+
num_pages = example["num_pages"]
|
747 |
+
|
748 |
+
# get boxes, texts, categories
|
749 |
+
bboxes, input_ids = encoded_example["normalized_bboxes"][1:-1], encoded_example["input_ids"][1:-1]
|
750 |
+
bboxes = [denormalize_box(bbox, width, height) for bbox in bboxes]
|
751 |
+
num_tokens = len(input_ids) + 2
|
752 |
+
|
753 |
+
# get unique bboxes and corresponding labels
|
754 |
+
bboxes_list, input_ids_list = list(), list()
|
755 |
+
input_ids_dict = dict()
|
756 |
+
bbox_prev = [-100, -100, -100, -100]
|
757 |
+
for i, (bbox, input_id) in enumerate(zip(bboxes, input_ids)):
|
758 |
+
if bbox != bbox_prev:
|
759 |
+
bboxes_list.append(bbox)
|
760 |
+
input_ids_dict[str(bbox)] = [input_id]
|
761 |
+
else:
|
762 |
+
input_ids_dict[str(bbox)].append(input_id)
|
763 |
+
|
764 |
+
# start_indexes_list.append(i)
|
765 |
+
bbox_prev = bbox
|
766 |
+
|
767 |
+
# do not keep "</s><pad><pad>..."
|
768 |
+
if input_ids_dict[str(bboxes_list[-1])][0] == (tokenizer.convert_tokens_to_ids('</s>')):
|
769 |
+
del input_ids_dict[str(bboxes_list[-1])]
|
770 |
+
bboxes_list = bboxes_list[:-1]
|
771 |
+
|
772 |
+
# get texts by line
|
773 |
+
input_ids_list = input_ids_dict.values()
|
774 |
+
texts_list = [tokenizer.decode(input_ids) for input_ids in input_ids_list]
|
775 |
+
|
776 |
+
# display DataFrame
|
777 |
+
df = pd.DataFrame({"texts": texts_list, "input_ids": input_ids_list, "bboxes": bboxes_list})
|
778 |
+
|
779 |
+
return image, df, num_tokens, page_no, num_pages
|
780 |
+
|
781 |
+
# display chunk of PDF image and its data
|
782 |
+
def display_chunk_lines_inference(index_chunk=None):
|
783 |
+
|
784 |
+
# get image and image data
|
785 |
+
image, df, num_tokens, page_no, num_pages = get_encoded_chunk_inference(index_chunk=index_chunk)
|
786 |
+
|
787 |
+
# get data from dataframe
|
788 |
+
input_ids = df["input_ids"]
|
789 |
+
texts = df["texts"]
|
790 |
+
bboxes = df["bboxes"]
|
791 |
+
|
792 |
+
print(f'Chunk ({num_tokens} tokens) of the PDF (page: {page_no+1} / {num_pages})\n')
|
793 |
+
|
794 |
+
# display image with bounding boxes
|
795 |
+
print(">> PDF image with bounding boxes of lines\n")
|
796 |
+
draw = ImageDraw.Draw(image)
|
797 |
+
|
798 |
+
labels = list()
|
799 |
+
for box, text in zip(bboxes, texts):
|
800 |
+
color = "red"
|
801 |
+
draw.rectangle(box, outline=color)
|
802 |
+
|
803 |
+
# resize image to original
|
804 |
+
width, height = image.size
|
805 |
+
image = image.resize((int(0.5*width), int(0.5*height)))
|
806 |
+
|
807 |
+
# convert to cv and display
|
808 |
+
img = np.array(image, dtype='uint8') # PIL to cv2
|
809 |
+
cv2_imshow(img)
|
810 |
+
cv2.waitKey(0)
|
811 |
+
|
812 |
+
# display image dataframe
|
813 |
+
print("\n>> Dataframe of annotated lines\n")
|
814 |
+
cols = ["texts", "bboxes"]
|
815 |
+
df = df[cols]
|
816 |
+
display(df)
|