File size: 4,868 Bytes
e613cea
 
6072bc6
30e6a40
 
 
 
76c42ac
30e6a40
 
9c2dd26
30e6a40
 
 
 
 
dd17486
30e6a40
dd17486
30e6a40
 
 
 
 
 
 
 
 
27afdea
e227a3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed3e5df
e227a3a
 
30e6a40
9376c53
01a3172
 
 
 
 
 
 
 
 
 
 
 
 
7f29eee
 
 
 
 
 
01a3172
109ec6e
 
01a3172
 
f059937
01a3172
 
d99b549
8668f22
01a3172
 
 
9376c53
7f29eee
 
 
 
 
 
27afdea
 
 
9376c53
30e6a40
 
 
 
 
 
9376c53
01a3172
9376c53
30e6a40
 
 
 
 
 
 
 
 
9376c53
 
 
 
27afdea
9376c53
 
 
 
27afdea
01a3172
30e6a40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import os
import io
import gradio as gr
import librosa
import numpy as np
import logging
import soundfile
import torchaudio
import asyncio
import argparse
import subprocess
import gradio.processing_utils as gr_processing_utils
logging.getLogger('numba').setLevel(logging.WARNING)
logging.getLogger('markdown_it').setLevel(logging.WARNING)
logging.getLogger('urllib3').setLevel(logging.WARNING)
logging.getLogger('matplotlib').setLevel(logging.WARNING)

limitation = os.getenv("SYSTEM") == "spaces"  # limit audio length in huggingface spaces

audio_postprocess_ori = gr.Audio.postprocess

def audio_postprocess(self, y):
    data = audio_postprocess_ori(self, y)
    if data is None:
        return None
    return gr_processing_utils.encode_url_or_file_to_base64(data["name"])

gr.Audio.postprocess = audio_postprocess
def unused_vc_fn(input_audio, vc_transform, voice):
    if input_audio is None:
        return "You need to upload an audio", None
    sampling_rate, audio = input_audio
    duration = audio.shape[0] / sampling_rate
    if duration > 20 and limitation:
        return "Please upload an audio file that is less than 20 seconds. If you need to generate a longer audio file, please use Colab.", None
    audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
    if len(audio.shape) > 1:
        audio = librosa.to_mono(audio.transpose(1, 0))
    if sampling_rate != 16000:
        audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
    raw_path = io.BytesIO()
    soundfile.write(raw_path, audio, 16000, format="wav")
    raw_path.seek(0)
    out_audio, out_sr = model.infer(sid, vc_transform, raw_path,
                                   auto_predict_f0=True,
                                   )
    return "Success", (44100, out_audio.cpu().numpy())


def run_inference(input_audio, speaker):
    if input_audio is None:
        return "You need to upload an audio", None
    sampling_rate, audio = input_audio
    duration = audio.shape[0] / sampling_rate
    if duration > 20 and limitation:
        return "Please upload an audio file that is less than 20 seconds. If you need to generate a longer audio file, please use Colab.", None
    audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
    if len(audio.shape) > 1:
        audio = librosa.to_mono(audio.transpose(1, 0))
    if sampling_rate != 16000:
        audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)

    #TODO edit from GUI
    cluster_ratio = 1
    noise_scale = 2
    is_pitch_prediction_enabled = True
    f0_method = "dio"
    transpose = 0

    model_path = f"./models/{speaker}/{speaker}.pth"
    config_path = f"./models/{speaker}/config.json"
    cluster_path = ""

    raw_path = 'tmp.wav'
    soundfile.write(raw_path, audio, 16000, format="wav")

    inference_cmd = f"svc infer {raw_path} -m {model_path} -c {config_path} {f'-k {cluster_path} -r {cluster_ratio}' if cluster_path != '' and cluster_ratio > 0 else ''} -t {transpose} --f0-method {f0_method} -n {noise_scale} -o out.wav {'' if is_pitch_prediction_enabled else '--no-auto-predict-f0'}"
    print(inference_cmd)
    # out_audio, out_sr = model.infer(sid, vc_transform, raw_path,
    #                              auto_predict_f0=True,
    #                               )

    result = subprocess.run(
        inference_cmd.split(),
        stdout=subprocess.PIPE,
        stderr=subprocess.STDOUT,
        text=True
      )
    out_audio, sr = torchaudio.load('out.wav')
    print(out_audio)
    return "Success", (44100, out_audio.cpu().numpy())

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--device', type=str, default='cpu')
    parser.add_argument('--api', action="store_true", default=False)
    parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
    args = parser.parse_args()

    speakers = ["chapaev", "petka", "anka"]

    models = []
    voices = []

    # !svc infer {NAME}.wav -c config.json -m G_riri_220.pth
    #  display(Audio(f"{NAME}.out.wav", autoplay=True))
    with gr.Blocks() as app:
        gr.Markdown(
            "# <center> Sovits Chapay\n"
        )

        with gr.Row():
            with gr.Column():
                vc_input = gr.Audio(label="Input audio"+' (less than 20 seconds)' if limitation else '')
                speaker = gr.Dropdown(label="Speaker", choices=speakers, visible=True)

                vc_submit = gr.Button("Generate", variant="primary")
            with gr.Column():
                vc_output1 = gr.Textbox(label="Output Message")
                vc_output2 = gr.Audio(label="Output Audio") # Audio(label="Output Audio")
            vc_submit.click(run_inference, [vc_input, speaker], [vc_output1, vc_output2])
        app.queue(concurrency_count=1, api_open=args.api).launch(share=args.share)