File size: 7,267 Bytes
46b0a70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
from __future__ import annotations

from logging import getLogger
from typing import Any, Literal

import numpy as np
import torch
import torchcrepe
from cm_time import timer
from numpy import dtype, float32, ndarray
from torch import FloatTensor, Tensor

from so_vits_svc_fork.utils import get_optimal_device

LOG = getLogger(__name__)


def normalize_f0(
    f0: FloatTensor, x_mask: FloatTensor, uv: FloatTensor, random_scale=True
) -> FloatTensor:
    # calculate means based on x_mask
    uv_sum = torch.sum(uv, dim=1, keepdim=True)
    uv_sum[uv_sum == 0] = 9999
    means = torch.sum(f0[:, 0, :] * uv, dim=1, keepdim=True) / uv_sum

    if random_scale:
        factor = torch.Tensor(f0.shape[0], 1).uniform_(0.8, 1.2).to(f0.device)
    else:
        factor = torch.ones(f0.shape[0], 1).to(f0.device)
    # normalize f0 based on means and factor
    f0_norm = (f0 - means.unsqueeze(-1)) * factor.unsqueeze(-1)
    if torch.isnan(f0_norm).any():
        exit(0)
    return f0_norm * x_mask


def interpolate_f0(
    f0: ndarray[Any, dtype[float32]]
) -> tuple[ndarray[Any, dtype[float32]], ndarray[Any, dtype[float32]]]:
    data = np.reshape(f0, (f0.size, 1))

    vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
    vuv_vector[data > 0.0] = 1.0
    vuv_vector[data <= 0.0] = 0.0

    ip_data = data

    frame_number = data.size
    last_value = 0.0
    for i in range(frame_number):
        if data[i] <= 0.0:
            j = i + 1
            for j in range(i + 1, frame_number):
                if data[j] > 0.0:
                    break
            if j < frame_number - 1:
                if last_value > 0.0:
                    step = (data[j] - data[i - 1]) / float(j - i)
                    for k in range(i, j):
                        ip_data[k] = data[i - 1] + step * (k - i + 1)
                else:
                    for k in range(i, j):
                        ip_data[k] = data[j]
            else:
                for k in range(i, frame_number):
                    ip_data[k] = last_value
        else:
            ip_data[i] = data[i]
            last_value = data[i]

    return ip_data[:, 0], vuv_vector[:, 0]


def compute_f0_parselmouth(
    wav_numpy: ndarray[Any, dtype[float32]],
    p_len: None | int = None,
    sampling_rate: int = 44100,
    hop_length: int = 512,
):
    import parselmouth

    x = wav_numpy
    if p_len is None:
        p_len = x.shape[0] // hop_length
    else:
        assert abs(p_len - x.shape[0] // hop_length) < 4, "pad length error"
    time_step = hop_length / sampling_rate * 1000
    f0_min = 50
    f0_max = 1100
    f0 = (
        parselmouth.Sound(x, sampling_rate)
        .to_pitch_ac(
            time_step=time_step / 1000,
            voicing_threshold=0.6,
            pitch_floor=f0_min,
            pitch_ceiling=f0_max,
        )
        .selected_array["frequency"]
    )

    pad_size = (p_len - len(f0) + 1) // 2
    if pad_size > 0 or p_len - len(f0) - pad_size > 0:
        f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
    return f0


def _resize_f0(
    x: ndarray[Any, dtype[float32]], target_len: int
) -> ndarray[Any, dtype[float32]]:
    source = np.array(x)
    source[source < 0.001] = np.nan
    target = np.interp(
        np.arange(0, len(source) * target_len, len(source)) / target_len,
        np.arange(0, len(source)),
        source,
    )
    res = np.nan_to_num(target)
    return res


def compute_f0_pyworld(
    wav_numpy: ndarray[Any, dtype[float32]],
    p_len: None | int = None,
    sampling_rate: int = 44100,
    hop_length: int = 512,
    type_: Literal["dio", "harvest"] = "dio",
):
    import pyworld

    if p_len is None:
        p_len = wav_numpy.shape[0] // hop_length
    if type_ == "dio":
        f0, t = pyworld.dio(
            wav_numpy.astype(np.double),
            fs=sampling_rate,
            f0_ceil=f0_max,
            f0_floor=f0_min,
            frame_period=1000 * hop_length / sampling_rate,
        )
    elif type_ == "harvest":
        f0, t = pyworld.harvest(
            wav_numpy.astype(np.double),
            fs=sampling_rate,
            f0_ceil=f0_max,
            f0_floor=f0_min,
            frame_period=1000 * hop_length / sampling_rate,
        )
    f0 = pyworld.stonemask(wav_numpy.astype(np.double), f0, t, sampling_rate)
    for index, pitch in enumerate(f0):
        f0[index] = round(pitch, 1)
    return _resize_f0(f0, p_len)


def compute_f0_crepe(
    wav_numpy: ndarray[Any, dtype[float32]],
    p_len: None | int = None,
    sampling_rate: int = 44100,
    hop_length: int = 512,
    device: str | torch.device = get_optimal_device(),
    model: Literal["full", "tiny"] = "full",
):
    audio = torch.from_numpy(wav_numpy).to(device, copy=True)
    audio = torch.unsqueeze(audio, dim=0)

    if audio.ndim == 2 and audio.shape[0] > 1:
        audio = torch.mean(audio, dim=0, keepdim=True).detach()
    # (T) -> (1, T)
    audio = audio.detach()

    pitch: Tensor = torchcrepe.predict(
        audio,
        sampling_rate,
        hop_length,
        f0_min,
        f0_max,
        model,
        batch_size=hop_length * 2,
        device=device,
        pad=True,
    )

    f0 = pitch.squeeze(0).cpu().float().numpy()
    p_len = p_len or wav_numpy.shape[0] // hop_length
    f0 = _resize_f0(f0, p_len)
    return f0


def compute_f0(
    wav_numpy: ndarray[Any, dtype[float32]],
    p_len: None | int = None,
    sampling_rate: int = 44100,
    hop_length: int = 512,
    method: Literal["crepe", "crepe-tiny", "parselmouth", "dio", "harvest"] = "dio",
    **kwargs,
):
    with timer() as t:
        wav_numpy = wav_numpy.astype(np.float32)
        wav_numpy /= np.quantile(np.abs(wav_numpy), 0.999)
        if method in ["dio", "harvest"]:
            f0 = compute_f0_pyworld(wav_numpy, p_len, sampling_rate, hop_length, method)
        elif method == "crepe":
            f0 = compute_f0_crepe(wav_numpy, p_len, sampling_rate, hop_length, **kwargs)
        elif method == "crepe-tiny":
            f0 = compute_f0_crepe(
                wav_numpy, p_len, sampling_rate, hop_length, model="tiny", **kwargs
            )
        elif method == "parselmouth":
            f0 = compute_f0_parselmouth(wav_numpy, p_len, sampling_rate, hop_length)
        else:
            raise ValueError(
                "type must be dio, crepe, crepe-tiny, harvest or parselmouth"
            )
    rtf = t.elapsed / (len(wav_numpy) / sampling_rate)
    LOG.info(f"F0 inference time:       {t.elapsed:.3f}s, RTF: {rtf:.3f}")
    return f0


def f0_to_coarse(f0: torch.Tensor | float):
    is_torch = isinstance(f0, torch.Tensor)
    f0_mel = 1127 * (1 + f0 / 700).log() if is_torch else 1127 * np.log(1 + f0 / 700)
    f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * (f0_bin - 2) / (
        f0_mel_max - f0_mel_min
    ) + 1

    f0_mel[f0_mel <= 1] = 1
    f0_mel[f0_mel > f0_bin - 1] = f0_bin - 1
    f0_coarse = (f0_mel + 0.5).long() if is_torch else np.rint(f0_mel).astype(np.int)
    assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, (
        f0_coarse.max(),
        f0_coarse.min(),
    )
    return f0_coarse


f0_bin = 256
f0_max = 1100.0
f0_min = 50.0
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
f0_mel_max = 1127 * np.log(1 + f0_max / 700)