File size: 4,400 Bytes
46b0a70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import torch
from torch import nn

from so_vits_svc_fork.modules import attentions as attentions
from so_vits_svc_fork.modules import commons as commons
from so_vits_svc_fork.modules import modules as modules


class SpeakerEncoder(torch.nn.Module):
    def __init__(
        self,
        mel_n_channels=80,
        model_num_layers=3,
        model_hidden_size=256,
        model_embedding_size=256,
    ):
        super().__init__()
        self.lstm = nn.LSTM(
            mel_n_channels, model_hidden_size, model_num_layers, batch_first=True
        )
        self.linear = nn.Linear(model_hidden_size, model_embedding_size)
        self.relu = nn.ReLU()

    def forward(self, mels):
        self.lstm.flatten_parameters()
        _, (hidden, _) = self.lstm(mels)
        embeds_raw = self.relu(self.linear(hidden[-1]))
        return embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True)

    def compute_partial_slices(self, total_frames, partial_frames, partial_hop):
        mel_slices = []
        for i in range(0, total_frames - partial_frames, partial_hop):
            mel_range = torch.arange(i, i + partial_frames)
            mel_slices.append(mel_range)

        return mel_slices

    def embed_utterance(self, mel, partial_frames=128, partial_hop=64):
        mel_len = mel.size(1)
        last_mel = mel[:, -partial_frames:]

        if mel_len > partial_frames:
            mel_slices = self.compute_partial_slices(
                mel_len, partial_frames, partial_hop
            )
            mels = list(mel[:, s] for s in mel_slices)
            mels.append(last_mel)
            mels = torch.stack(tuple(mels), 0).squeeze(1)

            with torch.no_grad():
                partial_embeds = self(mels)
            embed = torch.mean(partial_embeds, axis=0).unsqueeze(0)
            # embed = embed / torch.linalg.norm(embed, 2)
        else:
            with torch.no_grad():
                embed = self(last_mel)

        return embed


class Encoder(nn.Module):
    def __init__(
        self,
        in_channels,
        out_channels,
        hidden_channels,
        kernel_size,
        dilation_rate,
        n_layers,
        gin_channels=0,
    ):
        super().__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.hidden_channels = hidden_channels
        self.kernel_size = kernel_size
        self.dilation_rate = dilation_rate
        self.n_layers = n_layers
        self.gin_channels = gin_channels

        self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
        self.enc = modules.WN(
            hidden_channels,
            kernel_size,
            dilation_rate,
            n_layers,
            gin_channels=gin_channels,
        )
        self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)

    def forward(self, x, x_lengths, g=None):
        # print(x.shape,x_lengths.shape)
        x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
            x.dtype
        )
        x = self.pre(x) * x_mask
        x = self.enc(x, x_mask, g=g)
        stats = self.proj(x) * x_mask
        m, logs = torch.split(stats, self.out_channels, dim=1)
        z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
        return z, m, logs, x_mask


class TextEncoder(nn.Module):
    def __init__(
        self,
        out_channels,
        hidden_channels,
        kernel_size,
        n_layers,
        gin_channels=0,
        filter_channels=None,
        n_heads=None,
        p_dropout=None,
    ):
        super().__init__()
        self.out_channels = out_channels
        self.hidden_channels = hidden_channels
        self.kernel_size = kernel_size
        self.n_layers = n_layers
        self.gin_channels = gin_channels
        self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
        self.f0_emb = nn.Embedding(256, hidden_channels)

        self.enc_ = attentions.Encoder(
            hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
        )

    def forward(self, x, x_mask, f0=None, noice_scale=1):
        x = x + self.f0_emb(f0).transpose(1, 2)
        x = self.enc_(x * x_mask, x_mask)
        stats = self.proj(x) * x_mask
        m, logs = torch.split(stats, self.out_channels, dim=1)
        z = (m + torch.randn_like(m) * torch.exp(logs) * noice_scale) * x_mask

        return z, m, logs, x_mask