File size: 15,617 Bytes
46b0a70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
from __future__ import annotations

import json
import os
import re
import subprocess
import warnings
from itertools import groupby
from logging import getLogger
from pathlib import Path
from typing import Any, Literal, Sequence

import matplotlib
import matplotlib.pylab as plt
import numpy as np
import requests
import torch
import torch.backends.mps
import torch.nn as nn
import torchaudio
from cm_time import timer
from numpy import ndarray
from tqdm import tqdm
from transformers import HubertModel

from so_vits_svc_fork.hparams import HParams

LOG = getLogger(__name__)
HUBERT_SAMPLING_RATE = 16000
IS_COLAB = os.getenv("COLAB_RELEASE_TAG", False)


def get_optimal_device(index: int = 0) -> torch.device:
    if torch.cuda.is_available():
        return torch.device(f"cuda:{index % torch.cuda.device_count()}")
    elif torch.backends.mps.is_available():
        return torch.device("mps")
    else:
        try:
            import torch_xla.core.xla_model as xm  # noqa

            if xm.xrt_world_size() > 0:
                return torch.device("xla")
            # return xm.xla_device()
        except ImportError:
            pass
    return torch.device("cpu")


def download_file(
    url: str,
    filepath: Path | str,
    chunk_size: int = 64 * 1024,
    tqdm_cls: type = tqdm,
    skip_if_exists: bool = False,
    overwrite: bool = False,
    **tqdm_kwargs: Any,
):
    if skip_if_exists is True and overwrite is True:
        raise ValueError("skip_if_exists and overwrite cannot be both True")
    filepath = Path(filepath)
    filepath.parent.mkdir(parents=True, exist_ok=True)
    temppath = filepath.parent / f"{filepath.name}.download"
    if filepath.exists():
        if skip_if_exists:
            return
        elif not overwrite:
            filepath.unlink()
        else:
            raise FileExistsError(f"{filepath} already exists")
    temppath.unlink(missing_ok=True)
    resp = requests.get(url, stream=True)
    total = int(resp.headers.get("content-length", 0))
    kwargs = dict(
        total=total,
        unit="iB",
        unit_scale=True,
        unit_divisor=1024,
        desc=f"Downloading {filepath.name}",
    )
    kwargs.update(tqdm_kwargs)
    with temppath.open("wb") as f, tqdm_cls(**kwargs) as pbar:
        for data in resp.iter_content(chunk_size=chunk_size):
            size = f.write(data)
            pbar.update(size)
    temppath.rename(filepath)


PRETRAINED_MODEL_URLS = {
    "hifi-gan": [
        [
            "https://huggingface.co/therealvul/so-vits-svc-4.0-init/resolve/main/D_0.pth",
            "https://huggingface.co/therealvul/so-vits-svc-4.0-init/resolve/main/G_0.pth",
        ],
        [
            "https://huggingface.co/Himawari00/so-vits-svc4.0-pretrain-models/resolve/main/D_0.pth",
            "https://huggingface.co/Himawari00/so-vits-svc4.0-pretrain-models/resolve/main/G_0.pth",
        ],
    ],
    "contentvec": [
        [
            "https://huggingface.co/therealvul/so-vits-svc-4.0-init/resolve/main/checkpoint_best_legacy_500.pt"
        ],
        [
            "https://huggingface.co/Himawari00/so-vits-svc4.0-pretrain-models/resolve/main/checkpoint_best_legacy_500.pt"
        ],
        [
            "http://obs.cstcloud.cn/share/obs/sankagenkeshi/checkpoint_best_legacy_500.pt"
        ],
    ],
}
from joblib import Parallel, delayed


def ensure_pretrained_model(
    folder_path: Path | str, type_: str | dict[str, str], **tqdm_kwargs: Any
) -> tuple[Path, ...] | None:
    folder_path = Path(folder_path)

    # new code
    if not isinstance(type_, str):
        try:
            Parallel(n_jobs=len(type_))(
                [
                    delayed(download_file)(
                        url,
                        folder_path / filename,
                        position=i,
                        skip_if_exists=True,
                        **tqdm_kwargs,
                    )
                    for i, (filename, url) in enumerate(type_.items())
                ]
            )
            return tuple(folder_path / filename for filename in type_.values())
        except Exception as e:
            LOG.error(f"Failed to download {type_}")
            LOG.exception(e)

    # old code
    models_candidates = PRETRAINED_MODEL_URLS.get(type_, None)
    if models_candidates is None:
        LOG.warning(f"Unknown pretrained model type: {type_}")
        return
    for model_urls in models_candidates:
        paths = [folder_path / model_url.split("/")[-1] for model_url in model_urls]
        try:
            Parallel(n_jobs=len(paths))(
                [
                    delayed(download_file)(
                        url, path, position=i, skip_if_exists=True, **tqdm_kwargs
                    )
                    for i, (url, path) in enumerate(zip(model_urls, paths))
                ]
            )
            return tuple(paths)
        except Exception as e:
            LOG.error(f"Failed to download {model_urls}")
            LOG.exception(e)


class HubertModelWithFinalProj(HubertModel):
    def __init__(self, config):
        super().__init__(config)

        # The final projection layer is only used for backward compatibility.
        # Following https://github.com/auspicious3000/contentvec/issues/6
        # Remove this layer is necessary to achieve the desired outcome.
        self.final_proj = nn.Linear(config.hidden_size, config.classifier_proj_size)


def remove_weight_norm_if_exists(module, name: str = "weight"):
    r"""Removes the weight normalization reparameterization from a module.

    Args:
        module (Module): containing module
        name (str, optional): name of weight parameter

    Example:
        >>> m = weight_norm(nn.Linear(20, 40))
        >>> remove_weight_norm(m)
    """
    from torch.nn.utils.weight_norm import WeightNorm

    for k, hook in module._forward_pre_hooks.items():
        if isinstance(hook, WeightNorm) and hook.name == name:
            hook.remove(module)
            del module._forward_pre_hooks[k]
            return module


def get_hubert_model(
    device: str | torch.device, final_proj: bool = True
) -> HubertModel:
    if final_proj:
        model = HubertModelWithFinalProj.from_pretrained("lengyue233/content-vec-best")
    else:
        model = HubertModel.from_pretrained("lengyue233/content-vec-best")
    # Hubert is always used in inference mode, we can safely remove weight-norms
    for m in model.modules():
        if isinstance(m, (nn.Conv2d, nn.Conv1d)):
            remove_weight_norm_if_exists(m)

    return model.to(device)


def get_content(
    cmodel: HubertModel,
    audio: torch.Tensor | ndarray[Any, Any],
    device: torch.device | str,
    sr: int,
    legacy_final_proj: bool = False,
) -> torch.Tensor:
    audio = torch.as_tensor(audio)
    if sr != HUBERT_SAMPLING_RATE:
        audio = (
            torchaudio.transforms.Resample(sr, HUBERT_SAMPLING_RATE)
            .to(audio.device)(audio)
            .to(device)
        )
    if audio.ndim == 1:
        audio = audio.unsqueeze(0)
    with torch.no_grad(), timer() as t:
        if legacy_final_proj:
            warnings.warn("legacy_final_proj is deprecated")
            if not hasattr(cmodel, "final_proj"):
                raise ValueError("HubertModel does not have final_proj")
            c = cmodel(audio, output_hidden_states=True)["hidden_states"][9]
            c = cmodel.final_proj(c)
        else:
            c = cmodel(audio)["last_hidden_state"]
        c = c.transpose(1, 2)
    wav_len = audio.shape[-1] / HUBERT_SAMPLING_RATE
    LOG.info(
        f"HuBERT inference time  : {t.elapsed:.3f}s, RTF: {t.elapsed / wav_len:.3f}"
    )
    return c


def _substitute_if_same_shape(to_: dict[str, Any], from_: dict[str, Any]) -> None:
    not_in_to = list(filter(lambda x: x not in to_, from_.keys()))
    not_in_from = list(filter(lambda x: x not in from_, to_.keys()))
    if not_in_to:
        warnings.warn(f"Keys not found in model state dict:" f"{not_in_to}")
    if not_in_from:
        warnings.warn(f"Keys not found in checkpoint state dict:" f"{not_in_from}")
    shape_missmatch = []
    for k, v in from_.items():
        if k not in to_:
            pass
        elif hasattr(v, "shape"):
            if not hasattr(to_[k], "shape"):
                raise ValueError(f"Key {k} is not a tensor")
            if to_[k].shape == v.shape:
                to_[k] = v
            else:
                shape_missmatch.append((k, to_[k].shape, v.shape))
        elif isinstance(v, dict):
            assert isinstance(to_[k], dict)
            _substitute_if_same_shape(to_[k], v)
        else:
            to_[k] = v
    if shape_missmatch:
        warnings.warn(
            f"Shape mismatch: {[f'{k}: {v1} -> {v2}' for k, v1, v2 in shape_missmatch]}"
        )


def safe_load(model: torch.nn.Module, state_dict: dict[str, Any]) -> None:
    model_state_dict = model.state_dict()
    _substitute_if_same_shape(model_state_dict, state_dict)
    model.load_state_dict(model_state_dict)


def load_checkpoint(
    checkpoint_path: Path | str,
    model: torch.nn.Module,
    optimizer: torch.optim.Optimizer | None = None,
    skip_optimizer: bool = False,
) -> tuple[torch.nn.Module, torch.optim.Optimizer | None, float, int]:
    if not Path(checkpoint_path).is_file():
        raise FileNotFoundError(f"File {checkpoint_path} not found")
    with Path(checkpoint_path).open("rb") as f:
        with warnings.catch_warnings():
            warnings.filterwarnings(
                "ignore", category=UserWarning, message="TypedStorage is deprecated"
            )
            checkpoint_dict = torch.load(f, map_location="cpu", weights_only=True)
    iteration = checkpoint_dict["iteration"]
    learning_rate = checkpoint_dict["learning_rate"]

    # safe load module
    if hasattr(model, "module"):
        safe_load(model.module, checkpoint_dict["model"])
    else:
        safe_load(model, checkpoint_dict["model"])
    # safe load optim
    if (
        optimizer is not None
        and not skip_optimizer
        and checkpoint_dict["optimizer"] is not None
    ):
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            safe_load(optimizer, checkpoint_dict["optimizer"])

    LOG.info(f"Loaded checkpoint '{checkpoint_path}' (epoch {iteration})")
    return model, optimizer, learning_rate, iteration


def save_checkpoint(
    model: torch.nn.Module,
    optimizer: torch.optim.Optimizer,
    learning_rate: float,
    iteration: int,
    checkpoint_path: Path | str,
) -> None:
    LOG.info(
        "Saving model and optimizer state at epoch {} to {}".format(
            iteration, checkpoint_path
        )
    )
    if hasattr(model, "module"):
        state_dict = model.module.state_dict()
    else:
        state_dict = model.state_dict()
    with Path(checkpoint_path).open("wb") as f:
        torch.save(
            {
                "model": state_dict,
                "iteration": iteration,
                "optimizer": optimizer.state_dict(),
                "learning_rate": learning_rate,
            },
            f,
        )


def clean_checkpoints(
    path_to_models: Path | str, n_ckpts_to_keep: int = 2, sort_by_time: bool = True
) -> None:
    """Freeing up space by deleting saved ckpts

    Arguments:
    path_to_models    --  Path to the model directory
    n_ckpts_to_keep   --  Number of ckpts to keep, excluding G_0.pth and D_0.pth
    sort_by_time      --  True -> chronologically delete ckpts
                          False -> lexicographically delete ckpts
    """
    LOG.info("Cleaning old checkpoints...")
    path_to_models = Path(path_to_models)

    # Define sort key functions
    name_key = lambda p: int(re.match(r"[GD]_(\d+)", p.stem).group(1))
    time_key = lambda p: p.stat().st_mtime
    path_key = lambda p: (p.stem[0], time_key(p) if sort_by_time else name_key(p))

    models = list(
        filter(
            lambda p: (
                p.is_file()
                and re.match(r"[GD]_\d+", p.stem)
                and not p.stem.endswith("_0")
            ),
            path_to_models.glob("*.pth"),
        )
    )

    models_sorted = sorted(models, key=path_key)

    models_sorted_grouped = groupby(models_sorted, lambda p: p.stem[0])

    for group_name, group_items in models_sorted_grouped:
        to_delete_list = list(group_items)[:-n_ckpts_to_keep]

        for to_delete in to_delete_list:
            if to_delete.exists():
                LOG.info(f"Removing {to_delete}")
                if IS_COLAB:
                    to_delete.write_text("")
                to_delete.unlink()


def latest_checkpoint_path(dir_path: Path | str, regex: str = "G_*.pth") -> Path | None:
    dir_path = Path(dir_path)
    name_key = lambda p: int(re.match(r"._(\d+)\.pth", p.name).group(1))
    paths = list(sorted(dir_path.glob(regex), key=name_key))
    if len(paths) == 0:
        return None
    return paths[-1]


def plot_spectrogram_to_numpy(spectrogram: ndarray) -> ndarray:
    matplotlib.use("Agg")
    fig, ax = plt.subplots(figsize=(10, 2))
    im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
    plt.colorbar(im, ax=ax)
    plt.xlabel("Frames")
    plt.ylabel("Channels")
    plt.tight_layout()

    fig.canvas.draw()
    data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
    data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
    plt.close()
    return data


def get_backup_hparams(
    config_path: Path, model_path: Path, init: bool = True
) -> HParams:
    model_path.mkdir(parents=True, exist_ok=True)
    config_save_path = model_path / "config.json"
    if init:
        with config_path.open() as f:
            data = f.read()
        with config_save_path.open("w") as f:
            f.write(data)
    else:
        with config_save_path.open() as f:
            data = f.read()
    config = json.loads(data)

    hparams = HParams(**config)
    hparams.model_dir = model_path.as_posix()
    return hparams


def get_hparams(config_path: Path | str) -> HParams:
    config = json.loads(Path(config_path).read_text("utf-8"))
    hparams = HParams(**config)
    return hparams


def repeat_expand_2d(content: torch.Tensor, target_len: int) -> torch.Tensor:
    # content : [h, t]
    src_len = content.shape[-1]
    if target_len < src_len:
        return content[:, :target_len]
    else:
        return torch.nn.functional.interpolate(
            content.unsqueeze(0), size=target_len, mode="nearest"
        ).squeeze(0)


def plot_data_to_numpy(x: ndarray, y: ndarray) -> ndarray:
    matplotlib.use("Agg")
    fig, ax = plt.subplots(figsize=(10, 2))
    plt.plot(x)
    plt.plot(y)
    plt.tight_layout()

    fig.canvas.draw()
    data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
    data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
    plt.close()
    return data


def get_gpu_memory(type_: Literal["total", "free", "used"]) -> Sequence[int] | None:
    command = f"nvidia-smi --query-gpu=memory.{type_} --format=csv"
    try:
        memory_free_info = (
            subprocess.check_output(command.split())
            .decode("ascii")
            .split("\n")[:-1][1:]
        )
        memory_free_values = [int(x.split()[0]) for i, x in enumerate(memory_free_info)]
        return memory_free_values
    except Exception:
        return


def get_total_gpu_memory(type_: Literal["total", "free", "used"]) -> int | None:
    memories = get_gpu_memory(type_)
    if memories is None:
        return
    return sum(memories)