Spaces:
Sleeping
Sleeping
import os | |
import io | |
import gradio as gr | |
import librosa | |
import numpy as np | |
import logging | |
import soundfile | |
import asyncio | |
import argparse | |
import gradio.processing_utils as gr_processing_utils | |
logging.getLogger('numba').setLevel(logging.WARNING) | |
logging.getLogger('markdown_it').setLevel(logging.WARNING) | |
logging.getLogger('urllib3').setLevel(logging.WARNING) | |
logging.getLogger('matplotlib').setLevel(logging.WARNING) | |
limitation = os.getenv("SYSTEM") == "spaces" # limit audio length in huggingface spaces | |
audio_postprocess_ori = gr.Audio.postprocess | |
def audio_postprocess(self, y): | |
data = audio_postprocess_ori(self, y) | |
if data is None: | |
return None | |
return gr_processing_utils.encode_url_or_file_to_base64(data["name"]) | |
gr.Audio.postprocess = audio_postprocess | |
def vc_fn(input_audio, vc_transform, auto_f0): | |
if input_audio is None: | |
return "You need to upload an audio", None | |
sampling_rate, audio = input_audio | |
duration = audio.shape[0] / sampling_rate | |
if duration > 20 and limitation: | |
return "Please upload an audio file that is less than 20 seconds. If you need to generate a longer audio file, please use Colab.", None | |
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32) | |
if len(audio.shape) > 1: | |
audio = librosa.to_mono(audio.transpose(1, 0)) | |
if sampling_rate != 16000: | |
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000) | |
raw_path = io.BytesIO() | |
soundfile.write(raw_path, audio, 16000, format="wav") | |
raw_path.seek(0) | |
out_audio, out_sr = model.infer(sid, vc_transform, raw_path, | |
auto_predict_f0=auto_f0, | |
) | |
return "Success", (44100, out_audio.cpu().numpy()) | |
def get_speakers(): | |
speakers = [] | |
for _,dirs,_ in os.walk("/models"): | |
for folder in dirs: | |
cur_speaker = {} | |
# Look for G_****.pth | |
g = glob.glob(os.path.join("/models",folder,'G_*.pth')) | |
if not len(g): | |
continue | |
cur_speaker["model_path"] = g[0] | |
cur_speaker["model_folder"] = folder | |
cur_speaker["name"] = folder | |
speakers.append(copy.copy(cur_speaker)) | |
return sorted(speakers, key=lambda x:x["name"].lower()) | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--device', type=str, default='cpu') | |
parser.add_argument('--api', action="store_true", default=False) | |
parser.add_argument("--share", action="store_true", default=False, help="share gradio app") | |
args = parser.parse_args() | |
speakers = get_speakers() | |
speaker_list = [x["name"] for x in speakers] | |
models = [] | |
voices = [] | |
# !svc infer {NAME}.wav -c config.json -m G_riri_220.pth | |
# display(Audio(f"{NAME}.out.wav", autoplay=True)) | |
with gr.Blocks() as app: | |
gr.Markdown( | |
"# <center> Sovits Chapay\n" | |
"## <center> The input audio should be clean and pure voice without background music.\n" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
vc_input = gr.Audio(label="Input audio"+' (less than 20 seconds)' if limitation else '') | |
vc_transform = gr.Number(label="vc_transform", value=0) | |
voice = gr.Dropdown(choices=speaker_list, visible=True) | |
vc_submit = gr.Button("Generate", variant="primary") | |
with gr.Column(): | |
vc_output1 = gr.Textbox(label="Output Message") | |
vc_output2 = gr.Audio(label="Output Audio") | |
vc_submit.click(vc_fn, [vc_input, vc_transform, auto_f0], [vc_output1, vc_output2]) | |
app.queue(concurrency_count=1, api_open=args.api).launch(share=args.share) | |