Vladimir Alabov commited on
Commit
ff5d419
1 Parent(s): dd17486

Add greet #2

Browse files
Files changed (1) hide show
  1. app.py +0 -79
app.py CHANGED
@@ -1,85 +1,6 @@
1
  import os
2
  import io
3
  import gradio as gr
4
- import librosa
5
- import numpy as np
6
- import logging
7
- import soundfile
8
- import asyncio
9
- import argparse
10
- import gradio.processing_utils as gr_processing_utils
11
- logging.getLogger('numba').setLevel(logging.WARNING)
12
- logging.getLogger('markdown_it').setLevel(logging.WARNING)
13
- logging.getLogger('urllib3').setLevel(logging.WARNING)
14
- logging.getLogger('matplotlib').setLevel(logging.WARNING)
15
-
16
- limitation = os.getenv("SYSTEM") == "spaces" # limit audio length in huggingface spaces
17
-
18
- audio_postprocess_ori = gr.Audio.postprocess
19
-
20
- def audio_postprocess(self, y):
21
- data = audio_postprocess_ori(self, y)
22
- if data is None:
23
- return None
24
- return gr_processing_utils.encode_url_or_file_to_base64(data["name"])
25
-
26
- gr.Audio.postprocess = audio_postprocess
27
- def create_vc_fn(model, sid):
28
- def vc_fn(input_audio, vc_transform, auto_f0):
29
- if input_audio is None:
30
- return "You need to upload an audio", None
31
- sampling_rate, audio = input_audio
32
- duration = audio.shape[0] / sampling_rate
33
- if duration > 20 and limitation:
34
- return "Please upload an audio file that is less than 20 seconds. If you need to generate a longer audio file, please use Colab.", None
35
- audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
36
- if len(audio.shape) > 1:
37
- audio = librosa.to_mono(audio.transpose(1, 0))
38
- if sampling_rate != 16000:
39
- audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
40
- raw_path = io.BytesIO()
41
- soundfile.write(raw_path, audio, 16000, format="wav")
42
- raw_path.seek(0)
43
- out_audio, out_sr = model.infer(sid, vc_transform, raw_path,
44
- auto_predict_f0=auto_f0,
45
- )
46
- return "Success", (44100, out_audio.cpu().numpy())
47
- return vc_fn
48
-
49
- if __name__ == '__main__':
50
- parser = argparse.ArgumentParser()
51
- parser.add_argument('--device', type=str, default='cpu')
52
- parser.add_argument('--api', action="store_true", default=False)
53
- parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
54
- args = parser.parse_args()
55
- models = []
56
- voices = []
57
- for f in os.listdir("models"):
58
- name = f
59
- # = Svc(fr"models/{f}/{f}.pth", f"models/{f}/config.json", device=args.device)
60
- #cover = f"models/{f}/cover.png" if os.path.exists(f"models/{f}/cover.png") else None
61
- #models.append((name, cover, create_vc_fn(model, name)))
62
-
63
- # !svc infer {NAME}.wav -c config.json -m G_riri_220.pth
64
- # display(Audio(f"{NAME}.out.wav", autoplay=True))
65
- with gr.Blocks() as app:
66
- with gr.Tabs():
67
- for (name, cover, vc_fn) in models:
68
- with gr.TabItem(name):
69
- with gr.Row():
70
- with gr.Column():
71
- vc_input = gr.Audio(label="Input audio"+' (less than 20 seconds)' if limitation else '')
72
- vc_transform = gr.Number(label="vc_transform", value=0)
73
- auto_f0 = gr.Checkbox(label="auto_f0", value=False)
74
- vc_submit = gr.Button("Generate", variant="primary")
75
- with gr.Column():
76
- vc_output1 = gr.Textbox(label="Output Message")
77
- vc_output2 = gr.Audio(label="Output Audio")
78
- vc_submit.click(vc_fn, [vc_input, vc_transform, auto_f0], [vc_output1, vc_output2])
79
- app.queue(concurrency_count=1, api_open=args.api).launch(share=args.share)
80
-
81
-
82
-
83
 
84
  def greet(name):
85
  return "Hello " + name + "!!"
 
1
  import os
2
  import io
3
  import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
 
5
  def greet(name):
6
  return "Hello " + name + "!!"