from __future__ import annotations import torch import torch.nn.functional as F from torch import Tensor def slice_segments(x: Tensor, starts: Tensor, length: int) -> Tensor: if length is None: return x length = min(length, x.size(-1)) x_slice = torch.zeros((x.size()[:-1] + (length,)), dtype=x.dtype, device=x.device) ends = starts + length for i, (start, end) in enumerate(zip(starts, ends)): # LOG.debug(i, start, end, x.size(), x[i, ..., start:end].size(), x_slice.size()) # x_slice[i, ...] = x[i, ..., start:end] need to pad # x_slice[i, ..., :end - start] = x[i, ..., start:end] this does not work x_slice[i, ...] = F.pad(x[i, ..., start:end], (0, max(0, length - x.size(-1)))) return x_slice def rand_slice_segments_with_pitch( x: Tensor, f0: Tensor, x_lengths: Tensor | int | None, segment_size: int | None ): if segment_size is None: return x, f0, torch.arange(x.size(0), device=x.device) if x_lengths is None: x_lengths = x.size(-1) * torch.ones( x.size(0), dtype=torch.long, device=x.device ) # slice_starts = (torch.rand(z.size(0), device=z.device) * (z_lengths - segment_size)).long() slice_starts = ( torch.rand(x.size(0), device=x.device) * torch.max( x_lengths - segment_size, torch.zeros_like(x_lengths, device=x.device) ) ).long() z_slice = slice_segments(x, slice_starts, segment_size) f0_slice = slice_segments(f0, slice_starts, segment_size) return z_slice, f0_slice, slice_starts def slice_2d_segments(x: Tensor, starts: Tensor, length: int) -> Tensor: batch_size, num_features, seq_len = x.shape ends = starts + length idxs = ( torch.arange(seq_len, device=x.device) .unsqueeze(0) .unsqueeze(1) .repeat(batch_size, num_features, 1) ) mask = (idxs >= starts.unsqueeze(-1).unsqueeze(-1)) & ( idxs < ends.unsqueeze(-1).unsqueeze(-1) ) return x[mask].reshape(batch_size, num_features, length) def slice_1d_segments(x: Tensor, starts: Tensor, length: int) -> Tensor: batch_size, seq_len = x.shape ends = starts + length idxs = torch.arange(seq_len, device=x.device).unsqueeze(0).repeat(batch_size, 1) mask = (idxs >= starts.unsqueeze(-1)) & (idxs < ends.unsqueeze(-1)) return x[mask].reshape(batch_size, length) def _slice_segments_v3(x: Tensor, starts: Tensor, length: int) -> Tensor: shape = x.shape[:-1] + (length,) ends = starts + length idxs = torch.arange(x.shape[-1], device=x.device).unsqueeze(0).unsqueeze(0) unsqueeze_dims = len(shape) - len( x.shape ) # calculate number of dimensions to unsqueeze starts = starts.reshape(starts.shape + (1,) * unsqueeze_dims) ends = ends.reshape(ends.shape + (1,) * unsqueeze_dims) mask = (idxs >= starts) & (idxs < ends) return x[mask].reshape(shape) def init_weights(m, mean=0.0, std=0.01): classname = m.__class__.__name__ if classname.find("Conv") != -1: m.weight.data.normal_(mean, std) def get_padding(kernel_size, dilation=1): return int((kernel_size * dilation - dilation) / 2) def convert_pad_shape(pad_shape): l = pad_shape[::-1] pad_shape = [item for sublist in l for item in sublist] return pad_shape def subsequent_mask(length): mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0) return mask @torch.jit.script def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): n_channels_int = n_channels[0] in_act = input_a + input_b t_act = torch.tanh(in_act[:, :n_channels_int, :]) s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) acts = t_act * s_act return acts def sequence_mask(length, max_length=None): if max_length is None: max_length = length.max() x = torch.arange(max_length, dtype=length.dtype, device=length.device) return x.unsqueeze(0) < length.unsqueeze(1) def clip_grad_value_(parameters, clip_value, norm_type=2): if isinstance(parameters, torch.Tensor): parameters = [parameters] parameters = list(filter(lambda p: p.grad is not None, parameters)) norm_type = float(norm_type) if clip_value is not None: clip_value = float(clip_value) total_norm = 0 for p in parameters: param_norm = p.grad.data.norm(norm_type) total_norm += param_norm.item() ** norm_type if clip_value is not None: p.grad.data.clamp_(min=-clip_value, max=clip_value) total_norm = total_norm ** (1.0 / norm_type) return total_norm