File size: 13,030 Bytes
997d553
 
 
 
 
 
c5b6285
8167a01
 
c5b6285
 
 
 
bcd163e
 
 
 
 
 
c5b6285
1fc586c
 
c5b6285
 
 
997d553
 
 
 
 
 
 
 
 
 
 
 
 
7e56340
 
 
 
 
997d553
 
7e56340
 
 
 
 
 
 
 
 
 
 
 
997d553
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e56340
 
997d553
 
 
7e56340
 
997d553
 
7e56340
997d553
 
 
7e56340
997d553
 
 
 
 
7e56340
997d553
 
 
7e56340
997d553
 
 
7e56340
997d553
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5b6285
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
177de08
 
bcd163e
177de08
 
bcd163e
 
 
 
c5b6285
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76e8a43
 
 
 
 
 
 
c5b6285
76e8a43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5b6285
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import gradio as gr
from newsdataapi import NewsDataApiClient
import os
import json
import pandas as pd

# -----imports for Sentiment Analyzer
import re

from sklearn.pipeline import Pipeline
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer

import nltk
nltk.download('stopwords')
from nltk.corpus import stopwords

nltk.download('rslp')
from nltk.stem import RSLPStemmer

import joblib

#--------------------------------------------------------------------------------------
#------------------------ NEWS DATA RETRIEVER------------------------------------------
#--------------------------------------------------------------------------------------


def creating_data_dir(directory_path):
  # Use the os.makedirs() function to create the directory
  # The 'exist_ok=True' argument allows it to run without errors if the directory already exists
  os.makedirs(directory_path, exist_ok=True)

  # Check if the directory was created successfully
  if os.path.exists(directory_path):
      print(f"Directory '{directory_path}' created successfully.")
  else:
      print(f"Failed to create directory '{directory_path}'.")

def retrieve_news_per_keyword(api, keywords, domain):

  selected_domain = domain
  selected_domain_url = domain_dict[domain]
  
  for keyword in keywords:
    # print(f"{api} \n {keyword}")
    # response = api.news_api( q= keyword , country = "us", language = 'en', full_content = True)

    response = api.news_api(
        # domain=['bbc', 'forbes' , 'businessinsider_us'],  # 'bbc', 'forbes' , 'businessinsider_us',
        domainurl=['bbc.com', 'forbes.com', 'businessinsider.com'], # 'bbc.com', 'forbes.com', 'businessinsider.com',
        category='business' ,
        # country = "us",
        timeframe=48,
        language = 'en',
        full_content = True,
        size=10
    )
    # writing to a file
    file_path = os.path.join(directory_path, f"response_{keyword}.json")
    with open(file_path, "w") as outfile:
        json.dump(response, outfile)

    print(f"News Response for keyword {keyword} is retrieved")
    keywords.remove(keyword)

def combine_responses_into_one(directory_path):

  # Use a list comprehension to get all file names in the directory
  file_list = [f for f in os.listdir(directory_path) if os.path.isfile(os.path.join(directory_path, f))]

  #retrieve the file_keyword by extracting the string after "_"
  # Extract the file_keyword from each filename
  file_keywords = [filename.split('_')[1].split('.')[0] for filename in file_list]


  # Initialize an empty list to store the combined JSON data
  combined_json = []

  # Loop through each file name
  for filename in file_list:
      # Read the current JSON file
      with open(directory_path+'/'+filename, 'r') as file:
          current_json = json.load(file)

      # Extract the file_keyword from the filename
      file_keyword = filename.split('_')[1].split('.')[0]

      # Add the file_keyword to each result in the current JSON
      for result in current_json['results']:
          result['file_keyword'] = file_keyword

      # Extend the combined JSON list with the results from the current JSON
      combined_json.extend(current_json['results'])
      print(f'{filename} is added to the combined json object')
      # break # using the break to check the loop code always

  # Save the combined_json object as a JSON file
  with open('combined_news_response.json', 'w') as combined_file:
      json.dump(combined_json, combined_file, indent=4)

def convert_json_to_csv(file_name):
  json_data_df = pd.read_json(file_name)
  # json_data_df.head()

  # columns = [ 'title', 'keywords', 'creator', 'description', 'content', 'pubDate', 'country', 'category', 'language', 'file_keyword' ]
  columns = [ 'title', 'pubDate', 'content',  'country', 'category', 'language' ]
  csv_file_name = 'combined_news_response.csv'
  json_data_df[columns].to_csv(csv_file_name)
  print(f'{csv_file_name} is created')
    



#-------------------------------------First Function called from the UI----------------------------
# API key authorization, Initialize the client with your API key
NEWSDATA_API_KEY = "pub_2915202f68e543f70bb9aba9611735142c1fd"
keywords = [  "GDP",  "CPI",  "PPI",  "Unemployment Rate",  "Interest Rates",  "Inflation",  "Trade Balance",  "Retail Sales",  "Manufacturing Index",  "Earnings Reports",  "Revenue Growth",  "Profit Margins",  "Earnings Surprises",  "Geopolitical Events",  "Trade Tensions",  "Elections",  "Natural Disasters",  "Global Health Crises",  "Oil Prices",  "Gold Prices",  "Precious Metals",  "Agricultural Commodities",  "Federal Reserve",  "ECB",  "Forex Market",  "Exchange Rates",  "Currency Pairs",  "Tech Company Earnings",  "Tech Innovations",  "Retail Trends",  "Consumer Sentiment",  "Financial Regulations",  "Government Policies",  "Technical Analysis",  "Fundamental Analysis",  "Cryptocurrency News",  "Bitcoin",  "Altcoins",  "Cryptocurrency Regulations",  "S&P 500",  "Dow Jones",  "NASDAQ",  "Market Analysis",  "Stock Market Indices" ]
domain_dict = {'bbc': 'bbc.com', 'forbes': 'forbes.com', 'businessinsider_us': 'businessinsider.com'}

# creating a data directory
# Define the directory path you want to create
directory_path = './data'

def call_functions(domain):
  creating_data_dir(directory_path)
  items = os.listdir(directory_path)

  file_name = './combined_news_response.json'
  if len(items) == 0:
    print(f"Directory '{directory_path}' is empty.")
    api = NewsDataApiClient(apikey=NEWSDATA_API_KEY)
    retrieve_news_per_keyword(api, keywords, domain)
    combine_responses_into_one(directory_path)
    convert_json_to_csv(file_name)
  elif len(items) >= 2:
    print(f"Directory '{directory_path}' contains at least two files.")
    combine_responses_into_one(directory_path)
    convert_json_to_csv(file_name)
  else:
      print(f"Directory '{directory_path}' contains only one file.")

  # Read the combined CSV file and display the first few rows
  csv_file_name = "combined_news_response.csv"
  if os.path.exists(csv_file_name):
      df = pd.read_csv(csv_file_name)
      # Assuming df is your DataFrame
      if 'Unnamed: 0' in df.columns:
          df.drop('Unnamed: 0', axis=1, inplace=True)
      first_few_rows = df.head(10)  # Adjust the number of rows as needed
      return first_few_rows
  else:
      return f"CSV file '{csv_file_name}' not found."






#--------------------------------------------------------------------------------------
#------------------------ SENTIMENT ANALYZER------------------------------------------
#--------------------------------------------------------------------------------------

#----------------  Data Prepocessing ---------- 
def re_breakline(text_list):
    return [re.sub('[\n\r]', ' ', r) for r in text_list]
   
def re_hyperlinks(text_list):
    # Applying regex
    pattern = 'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+'
    return [re.sub(pattern, ' link ', r) for r in text_list]
  
def re_dates(text_list):
    # Applying regex
    pattern = '([0-2][0-9]|(3)[0-1])(\/|\.)(((0)[0-9])|((1)[0-2]))(\/|\.)\d{2,4}'
    return [re.sub(pattern, ' date ', r) for r in text_list]


def re_money(text_list):
    # Applying regex
    pattern = '[R]{0,1}\$[ ]{0,}\d+(,|\.)\d+'
    return [re.sub(pattern, ' paisa ', r) for r in text_list]
    
def re_numbers(text_list):
    # Applying regex
    return [re.sub('[0-9]+', ' num ', r) for r in text_list]

def re_negation(text_list):
    # Applying regex
    return [re.sub('([nN][ãÃaA][oO]|[ñÑ]| [nN] )', ' negate ', r) for r in text_list]

def re_special_chars(text_list):
    # Applying regex
    return [re.sub('\W', ' ', r) for r in text_list]
def re_whitespaces(text_list):
    # Applying regex
    white_spaces = [re.sub('\s+', ' ', r) for r in text_list]
    white_spaces_end = [re.sub('[ \t]+$', '', r) for r in white_spaces]
    return white_spaces_end

def stopwords_removal(text, cached_stopwords=stopwords.words('english')):
    return [c.lower() for c in text.split() if c.lower() not in cached_stopwords]

def stemming_process(text, stemmer=RSLPStemmer()):
    return [stemmer.stem(c) for c in text.split()]

# Get English stopwords
en_stopwords = stopwords.words('english')

class ApplyRegex(BaseEstimator, TransformerMixin):

    def __init__(self, regex_transformers):
        self.regex_transformers = regex_transformers

    def fit(self, X, y=None):
        return self

    def transform(self, X, y=None):
        # Applying all regex functions in the regex_transformers dictionary
        for regex_name, regex_function in self.regex_transformers.items():
            X = regex_function(X)

        return X
        
# Class for stopwords removal from the corpus
class StopWordsRemoval(BaseEstimator, TransformerMixin):

    def __init__(self, text_stopwords):
        self.text_stopwords = text_stopwords
    def fit(self, X, y=None):
        return self

    def transform(self, X, y=None):
        return [' '.join(stopwords_removal(comment, self.text_stopwords)) for comment in X]

# Class for apply the stemming process
class StemmingProcess(BaseEstimator, TransformerMixin):

    def __init__(self, stemmer):
        self.stemmer = stemmer

    def fit(self, X, y=None):
        return self

    def transform(self, X, y=None):
        return [' '.join(stemming_process(comment, self.stemmer)) for comment in X]

# Class for extracting features from corpus
class TextFeatureExtraction(BaseEstimator, TransformerMixin):

    def __init__(self, vectorizer):
        self.vectorizer = vectorizer

    def fit(self, X, y=None):
        return self

    def transform(self, X, y=None):
        return self.vectorizer.fit_transform(X).toarray()


#----------------------------Creating Pipeline for Preparing the data-----
# Defining regex transformers to be applied
regex_transformers = {
    'break_line': re_breakline,
    'hiperlinks': re_hyperlinks,
    'dates': re_dates,
    'money': re_money,
    'numbers': re_numbers,
    'negation': re_negation,
    'special_chars': re_special_chars,
    'whitespaces': re_whitespaces
}

# Defining the vectorizer to extract features from text
vectorizer = TfidfVectorizer(max_features=300, min_df=7, max_df=0.8, stop_words=en_stopwords)

# Building the Pipeline
text_pipeline = Pipeline([
    ('regex', ApplyRegex(regex_transformers)),
    ('stopwords', StopWordsRemoval(stopwords.words('portuguese'))),
    ('stemming', StemmingProcess(RSLPStemmer())),
    ('text_features', TextFeatureExtraction(vectorizer))
])



#----------------- Analyzing the Sentiments of whole dataset-------

def sentiment_analyzer(csv_file_name='combined_news_response.csv'):

  df = pd.read_csv(csv_file_name)
  df.drop('Unnamed: 0',axis=1,inplace=True)

  # Splitting into X and y
  X = list(df['content'].values)
  # Applying the pipeline
  X_processed = text_pipeline.fit_transform(X)

  # Load a saved model
  loaded_model_nb = joblib.load("Naive Bayes_model.joblib")

  # Use the loaded model for inference
  loaded_predictions_nb = loaded_model_nb.predict(X_processed)
  sentiments = loaded_predictions_nb
  
  # Sentiment mapping
  sentiment_mapping = {0: 'negative', 1: 'neutral', 2: 'positive'}

  print(f"df['content'].values ==> {len(df['content'].values)} \n sentiments length ==> {len(sentiments)}")
  # Create a DataFrame
  sentiment_df = pd.DataFrame({
      'content': df['content'].values,
      'sentiment': [sentiment_mapping[sent] for sent in sentiments]
  })

  return sentiment_df





# Creating the app for both 

with gr.Blocks() as demo:
  gr.Markdown("# Welcome to News Retrieval and Sentiment Analyzer App a.k.a InfoMood Tracker")
  gr.Markdown("## Best tracker for your News around the globe ! ")
  with gr.Accordion("Steps to run the App"):
    gr.Markdown("1. Select the Domain from which you want to retrieve the news")
    gr.Markdown("2. Click on the `Retrieve news` to retrieve the news from the domain. You Should see that the result displayed in the form of Table")
    gr.Markdown("3. Click on the `Analyze Sentiment` to analyze the sentiments of the news retrieved.")
    # gr.Markdown("4. ")
      
  with gr.Row():
    with gr.Column(scale=1, min_width=600):
      ui_domain = gr.Dropdown(["bbc", "forbes", "businessinsider_us"], label="Select Domain")
      retrieve_button = gr.Button("Retrieve news")
      df_output = gr.Dataframe(type="pandas",wrap=True,label="News retrieved from the selected domain")

      retrieve_button.click(call_functions, inputs=ui_domain, outputs=df_output)

  with gr.Row():
    with gr.Column(scale=1, min_width=600):
        ui_input = gr.Textbox(value='combined_news_response.csv' , visible=False)
        view_sentiment_bttn = gr.Button("Analyze Sentiment")
        df_output = gr.Dataframe(type="pandas",wrap=True, label="News along with Sentiment")
        
        view_sentiment_bttn.click(sentiment_analyzer, inputs=ui_input, outputs=df_output)


demo.launch(debug=True)