face-swap-docker / clip /clipseg.py
pknez's picture
Upload 913 files
0c87db7
import math
from os.path import basename, dirname, join, isfile
import torch
from torch import nn
from torch.nn import functional as nnf
from torch.nn.modules.activation import ReLU
def get_prompt_list(prompt):
if prompt == 'plain':
return ['{}']
elif prompt == 'fixed':
return ['a photo of a {}.']
elif prompt == 'shuffle':
return ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.']
elif prompt == 'shuffle+':
return ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.',
'a cropped photo of a {}.', 'a good photo of a {}.', 'a photo of one {}.',
'a bad photo of a {}.', 'a photo of the {}.']
else:
raise ValueError('Invalid value for prompt')
def forward_multihead_attention(x, b, with_aff=False, attn_mask=None):
"""
Simplified version of multihead attention (taken from torch source code but without tons of if clauses).
The mlp and layer norm come from CLIP.
x: input.
b: multihead attention module.
"""
x_ = b.ln_1(x)
q, k, v = nnf.linear(x_, b.attn.in_proj_weight, b.attn.in_proj_bias).chunk(3, dim=-1)
tgt_len, bsz, embed_dim = q.size()
head_dim = embed_dim // b.attn.num_heads
scaling = float(head_dim) ** -0.5
q = q.contiguous().view(tgt_len, bsz * b.attn.num_heads, b.attn.head_dim).transpose(0, 1)
k = k.contiguous().view(-1, bsz * b.attn.num_heads, b.attn.head_dim).transpose(0, 1)
v = v.contiguous().view(-1, bsz * b.attn.num_heads, b.attn.head_dim).transpose(0, 1)
q = q * scaling
attn_output_weights = torch.bmm(q, k.transpose(1, 2)) # n_heads * batch_size, tokens^2, tokens^2
if attn_mask is not None:
attn_mask_type, attn_mask = attn_mask
n_heads = attn_output_weights.size(0) // attn_mask.size(0)
attn_mask = attn_mask.repeat(n_heads, 1)
if attn_mask_type == 'cls_token':
# the mask only affects similarities compared to the readout-token.
attn_output_weights[:, 0, 1:] = attn_output_weights[:, 0, 1:] * attn_mask[None,...]
# attn_output_weights[:, 0, 0] = 0*attn_output_weights[:, 0, 0]
if attn_mask_type == 'all':
# print(attn_output_weights.shape, attn_mask[:, None].shape)
attn_output_weights[:, 1:, 1:] = attn_output_weights[:, 1:, 1:] * attn_mask[:, None]
attn_output_weights = torch.softmax(attn_output_weights, dim=-1)
attn_output = torch.bmm(attn_output_weights, v)
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
attn_output = b.attn.out_proj(attn_output)
x = x + attn_output
x = x + b.mlp(b.ln_2(x))
if with_aff:
return x, attn_output_weights
else:
return x
class CLIPDenseBase(nn.Module):
def __init__(self, version, reduce_cond, reduce_dim, prompt, n_tokens):
super().__init__()
import clip
# prec = torch.FloatTensor
self.clip_model, _ = clip.load(version, device='cpu', jit=False)
self.model = self.clip_model.visual
# if not None, scale conv weights such that we obtain n_tokens.
self.n_tokens = n_tokens
for p in self.clip_model.parameters():
p.requires_grad_(False)
# conditional
if reduce_cond is not None:
self.reduce_cond = nn.Linear(512, reduce_cond)
for p in self.reduce_cond.parameters():
p.requires_grad_(False)
else:
self.reduce_cond = None
self.film_mul = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim)
self.film_add = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim)
self.reduce = nn.Linear(768, reduce_dim)
self.prompt_list = get_prompt_list(prompt)
# precomputed prompts
import pickle
if isfile('precomputed_prompt_vectors.pickle'):
precomp = pickle.load(open('precomputed_prompt_vectors.pickle', 'rb'))
self.precomputed_prompts = {k: torch.from_numpy(v) for k, v in precomp.items()}
else:
self.precomputed_prompts = dict()
def rescaled_pos_emb(self, new_size):
assert len(new_size) == 2
a = self.model.positional_embedding[1:].T.view(1, 768, *self.token_shape)
b = nnf.interpolate(a, new_size, mode='bicubic', align_corners=False).squeeze(0).view(768, new_size[0]*new_size[1]).T
return torch.cat([self.model.positional_embedding[:1], b])
def visual_forward(self, x_inp, extract_layers=(), skip=False, mask=None):
with torch.no_grad():
inp_size = x_inp.shape[2:]
if self.n_tokens is not None:
stride2 = x_inp.shape[2] // self.n_tokens
conv_weight2 = nnf.interpolate(self.model.conv1.weight, (stride2, stride2), mode='bilinear', align_corners=True)
x = nnf.conv2d(x_inp, conv_weight2, bias=self.model.conv1.bias, stride=stride2, dilation=self.model.conv1.dilation)
else:
x = self.model.conv1(x_inp) # shape = [*, width, grid, grid]
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
x = torch.cat([self.model.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
standard_n_tokens = 50 if self.model.conv1.kernel_size[0] == 32 else 197
if x.shape[1] != standard_n_tokens:
new_shape = int(math.sqrt(x.shape[1]-1))
x = x + self.rescaled_pos_emb((new_shape, new_shape)).to(x.dtype)[None,:,:]
else:
x = x + self.model.positional_embedding.to(x.dtype)
x = self.model.ln_pre(x)
x = x.permute(1, 0, 2) # NLD -> LND
activations, affinities = [], []
for i, res_block in enumerate(self.model.transformer.resblocks):
if mask is not None:
mask_layer, mask_type, mask_tensor = mask
if mask_layer == i or mask_layer == 'all':
# import ipdb; ipdb.set_trace()
size = int(math.sqrt(x.shape[0] - 1))
attn_mask = (mask_type, nnf.interpolate(mask_tensor.unsqueeze(1).float(), (size, size)).view(mask_tensor.shape[0], size * size))
else:
attn_mask = None
else:
attn_mask = None
x, aff_per_head = forward_multihead_attention(x, res_block, with_aff=True, attn_mask=attn_mask)
if i in extract_layers:
affinities += [aff_per_head]
#if self.n_tokens is not None:
# activations += [nnf.interpolate(x, inp_size, mode='bilinear', align_corners=True)]
#else:
activations += [x]
if len(extract_layers) > 0 and i == max(extract_layers) and skip:
print('early skip')
break
x = x.permute(1, 0, 2) # LND -> NLD
x = self.model.ln_post(x[:, 0, :])
if self.model.proj is not None:
x = x @ self.model.proj
return x, activations, affinities
def sample_prompts(self, words, prompt_list=None):
prompt_list = prompt_list if prompt_list is not None else self.prompt_list
prompt_indices = torch.multinomial(torch.ones(len(prompt_list)), len(words), replacement=True)
prompts = [prompt_list[i] for i in prompt_indices]
return [promt.format(w) for promt, w in zip(prompts, words)]
def get_cond_vec(self, conditional, batch_size):
# compute conditional from a single string
if conditional is not None and type(conditional) == str:
cond = self.compute_conditional(conditional)
cond = cond.repeat(batch_size, 1)
# compute conditional from string list/tuple
elif conditional is not None and type(conditional) in {list, tuple} and type(conditional[0]) == str:
assert len(conditional) == batch_size
cond = self.compute_conditional(conditional)
# use conditional directly
elif conditional is not None and type(conditional) == torch.Tensor and conditional.ndim == 2:
cond = conditional
# compute conditional from image
elif conditional is not None and type(conditional) == torch.Tensor:
with torch.no_grad():
cond, _, _ = self.visual_forward(conditional)
else:
raise ValueError('invalid conditional')
return cond
def compute_conditional(self, conditional):
import clip
dev = next(self.parameters()).device
if type(conditional) in {list, tuple}:
text_tokens = clip.tokenize(conditional).to(dev)
cond = self.clip_model.encode_text(text_tokens)
else:
if conditional in self.precomputed_prompts:
cond = self.precomputed_prompts[conditional].float().to(dev)
else:
text_tokens = clip.tokenize([conditional]).to(dev)
cond = self.clip_model.encode_text(text_tokens)[0]
if self.shift_vector is not None:
return cond + self.shift_vector
else:
return cond
def clip_load_untrained(version):
assert version == 'ViT-B/16'
from clip.model import CLIP
from clip.clip import _MODELS, _download
model = torch.jit.load(_download(_MODELS['ViT-B/16'])).eval()
state_dict = model.state_dict()
vision_width = state_dict["visual.conv1.weight"].shape[0]
vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
image_resolution = vision_patch_size * grid_size
embed_dim = state_dict["text_projection"].shape[1]
context_length = state_dict["positional_embedding"].shape[0]
vocab_size = state_dict["token_embedding.weight"].shape[0]
transformer_width = state_dict["ln_final.weight"].shape[0]
transformer_heads = transformer_width // 64
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))
return CLIP(embed_dim, image_resolution, vision_layers, vision_width, vision_patch_size,
context_length, vocab_size, transformer_width, transformer_heads, transformer_layers)
class CLIPDensePredT(CLIPDenseBase):
def __init__(self, version='ViT-B/32', extract_layers=(3, 6, 9), cond_layer=0, reduce_dim=128, n_heads=4, prompt='fixed',
extra_blocks=0, reduce_cond=None, fix_shift=False,
learn_trans_conv_only=False, limit_to_clip_only=False, upsample=False,
add_calibration=False, rev_activations=False, trans_conv=None, n_tokens=None, complex_trans_conv=False):
super().__init__(version, reduce_cond, reduce_dim, prompt, n_tokens)
# device = 'cpu'
self.extract_layers = extract_layers
self.cond_layer = cond_layer
self.limit_to_clip_only = limit_to_clip_only
self.process_cond = None
self.rev_activations = rev_activations
depth = len(extract_layers)
if add_calibration:
self.calibration_conds = 1
self.upsample_proj = nn.Conv2d(reduce_dim, 1, kernel_size=1) if upsample else None
self.add_activation1 = True
self.version = version
self.token_shape = {'ViT-B/32': (7, 7), 'ViT-B/16': (14, 14)}[version]
if fix_shift:
# self.shift_vector = nn.Parameter(torch.load(join(dirname(basename(__file__)), 'clip_text_shift_vector.pth')), requires_grad=False)
self.shift_vector = nn.Parameter(torch.load(join(dirname(basename(__file__)), 'shift_text_to_vis.pth')), requires_grad=False)
# self.shift_vector = nn.Parameter(-1*torch.load(join(dirname(basename(__file__)), 'shift2.pth')), requires_grad=False)
else:
self.shift_vector = None
if trans_conv is None:
trans_conv_ks = {'ViT-B/32': (32, 32), 'ViT-B/16': (16, 16)}[version]
else:
# explicitly define transposed conv kernel size
trans_conv_ks = (trans_conv, trans_conv)
if not complex_trans_conv:
self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks)
else:
assert trans_conv_ks[0] == trans_conv_ks[1]
tp_kernels = (trans_conv_ks[0] // 4, trans_conv_ks[0] // 4)
self.trans_conv = nn.Sequential(
nn.Conv2d(reduce_dim, reduce_dim, kernel_size=3, padding=1),
nn.ReLU(),
nn.ConvTranspose2d(reduce_dim, reduce_dim // 2, kernel_size=tp_kernels[0], stride=tp_kernels[0]),
nn.ReLU(),
nn.ConvTranspose2d(reduce_dim // 2, 1, kernel_size=tp_kernels[1], stride=tp_kernels[1]),
)
# self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks)
assert len(self.extract_layers) == depth
self.reduces = nn.ModuleList([nn.Linear(768, reduce_dim) for _ in range(depth)])
self.blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(len(self.extract_layers))])
self.extra_blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(extra_blocks)])
# refinement and trans conv
if learn_trans_conv_only:
for p in self.parameters():
p.requires_grad_(False)
for p in self.trans_conv.parameters():
p.requires_grad_(True)
self.prompt_list = get_prompt_list(prompt)
def forward(self, inp_image, conditional=None, return_features=False, mask=None):
assert type(return_features) == bool
inp_image = inp_image.to(self.model.positional_embedding.device)
if mask is not None:
raise ValueError('mask not supported')
# x_inp = normalize(inp_image)
x_inp = inp_image
bs, dev = inp_image.shape[0], x_inp.device
cond = self.get_cond_vec(conditional, bs)
visual_q, activations, _ = self.visual_forward(x_inp, extract_layers=[0] + list(self.extract_layers))
activation1 = activations[0]
activations = activations[1:]
_activations = activations[::-1] if not self.rev_activations else activations
a = None
for i, (activation, block, reduce) in enumerate(zip(_activations, self.blocks, self.reduces)):
if a is not None:
a = reduce(activation) + a
else:
a = reduce(activation)
if i == self.cond_layer:
if self.reduce_cond is not None:
cond = self.reduce_cond(cond)
a = self.film_mul(cond) * a + self.film_add(cond)
a = block(a)
for block in self.extra_blocks:
a = a + block(a)
a = a[1:].permute(1, 2, 0) # rm cls token and -> BS, Feats, Tokens
size = int(math.sqrt(a.shape[2]))
a = a.view(bs, a.shape[1], size, size)
a = self.trans_conv(a)
if self.n_tokens is not None:
a = nnf.interpolate(a, x_inp.shape[2:], mode='bilinear', align_corners=True)
if self.upsample_proj is not None:
a = self.upsample_proj(a)
a = nnf.interpolate(a, x_inp.shape[2:], mode='bilinear')
if return_features:
return a, visual_q, cond, [activation1] + activations
else:
return a,
class CLIPDensePredTMasked(CLIPDensePredT):
def __init__(self, version='ViT-B/32', extract_layers=(3, 6, 9), cond_layer=0, reduce_dim=128, n_heads=4,
prompt='fixed', extra_blocks=0, reduce_cond=None, fix_shift=False, learn_trans_conv_only=False,
refine=None, limit_to_clip_only=False, upsample=False, add_calibration=False, n_tokens=None):
super().__init__(version=version, extract_layers=extract_layers, cond_layer=cond_layer, reduce_dim=reduce_dim,
n_heads=n_heads, prompt=prompt, extra_blocks=extra_blocks, reduce_cond=reduce_cond,
fix_shift=fix_shift, learn_trans_conv_only=learn_trans_conv_only,
limit_to_clip_only=limit_to_clip_only, upsample=upsample, add_calibration=add_calibration,
n_tokens=n_tokens)
def visual_forward_masked(self, img_s, seg_s):
return super().visual_forward(img_s, mask=('all', 'cls_token', seg_s))
def forward(self, img_q, cond_or_img_s, seg_s=None, return_features=False):
if seg_s is None:
cond = cond_or_img_s
else:
img_s = cond_or_img_s
with torch.no_grad():
cond, _, _ = self.visual_forward_masked(img_s, seg_s)
return super().forward(img_q, cond, return_features=return_features)
class CLIPDenseBaseline(CLIPDenseBase):
def __init__(self, version='ViT-B/32', cond_layer=0,
extract_layer=9, reduce_dim=128, reduce2_dim=None, prompt='fixed',
reduce_cond=None, limit_to_clip_only=False, n_tokens=None):
super().__init__(version, reduce_cond, reduce_dim, prompt, n_tokens)
device = 'cpu'
# self.cond_layer = cond_layer
self.extract_layer = extract_layer
self.limit_to_clip_only = limit_to_clip_only
self.shift_vector = None
self.token_shape = {'ViT-B/32': (7, 7), 'ViT-B/16': (14, 14)}[version]
assert reduce2_dim is not None
self.reduce2 = nn.Sequential(
nn.Linear(reduce_dim, reduce2_dim),
nn.ReLU(),
nn.Linear(reduce2_dim, reduce_dim)
)
trans_conv_ks = {'ViT-B/32': (32, 32), 'ViT-B/16': (16, 16)}[version]
self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks)
def forward(self, inp_image, conditional=None, return_features=False):
inp_image = inp_image.to(self.model.positional_embedding.device)
# x_inp = normalize(inp_image)
x_inp = inp_image
bs, dev = inp_image.shape[0], x_inp.device
cond = self.get_cond_vec(conditional, bs)
visual_q, activations, affinities = self.visual_forward(x_inp, extract_layers=[self.extract_layer])
a = activations[0]
a = self.reduce(a)
a = self.film_mul(cond) * a + self.film_add(cond)
if self.reduce2 is not None:
a = self.reduce2(a)
# the original model would execute a transformer block here
a = a[1:].permute(1, 2, 0) # rm cls token and -> BS, Feats, Tokens
size = int(math.sqrt(a.shape[2]))
a = a.view(bs, a.shape[1], size, size)
a = self.trans_conv(a)
if return_features:
return a, visual_q, cond, activations
else:
return a,
class CLIPSegMultiLabel(nn.Module):
def __init__(self, model) -> None:
super().__init__()
from third_party.JoEm.data_loader import get_seen_idx, get_unseen_idx, VOC
self.pascal_classes = VOC
from clip.clipseg import CLIPDensePredT
from general_utils import load_model
# self.clipseg = load_model('rd64-vit16-neg0.2-phrasecut', strict=False)
self.clipseg = load_model(model, strict=False)
self.clipseg.eval()
def forward(self, x):
bs = x.shape[0]
out = torch.ones(21, bs, 352, 352).to(x.device) * -10
for class_id, class_name in enumerate(self.pascal_classes):
fac = 3 if class_name == 'background' else 1
with torch.no_grad():
pred = torch.sigmoid(self.clipseg(x, class_name)[0][:,0]) * fac
out[class_id] += pred
out = out.permute(1, 0, 2, 3)
return out
# construct output tensor