File size: 22,986 Bytes
ae92d51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
"""
Modeling Relational Data with Graph Convolutional Networks
Paper: https://arxiv.org/abs/1703.06103
Code: https://github.com/tkipf/relational-gcn
Difference compared to tkipf/relation-gcn
* l2norm applied to all weights
* remove nodes that won't be touched
"""
import argparse, gc
import numpy as np
import time
import torch as th
import torch.nn as nn
import dgl.function as fn
import torch.nn.functional as F
import dgl
import dgl.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel
from dgl import DGLGraph
from functools import partial

from dgl.data.rdf import AIFBDataset
from src.skeleton.graph_builder import StandaloneGraphBuilder
from src.skeleton.train_type import SamplingGraphTraining
from src.application.rgcn.rgcn import RelGraphEmbedLayer, EntityClassify
from dgl.contrib.hostmap_tensor import HostMapTensor
from src.skeleton.dataloader import Dataloader
import tqdm

from sklearn.metrics import roc_auc_score
# from torch.utils.tensorboard import SummaryWriter

'''
    这是单机的异构图节点分类任务-Demo:

    适用于:
        -- 图的数据量较大,比如100万~1亿点, 1000万~10亿边。

    class RgcnGraphBuilder 负责加载数据
    class RgcnTrainer 负责训练和预测
    class RgcnTrainingDataLoader 负责做训练采样和数据遍历

    用户如果需要改动只需要:

    1、改动RgcnGraphBuilder.build_dataset 此方法负责从DGL图中分离训练数据、预测数据、测试数据
    2、改动RgcnTrainer.train 此方法负责训练逻辑
    3、改动RgcnTrainer.evaluate 此方法负责离线预测逻辑
    4、改动RgcnTrainingDataLoader.init 此方法负责输出返回一个迭代遍历器、用于遍历数据集

    这里使用AIFB数据集做精度对齐(epoch=50, batch_size=128)
    社区aifb数据集节点分类测试集精度: Final Test Accuracy: 0.9250 | Test loss: 0.3929
    平台aifb数据集节点分类测试集精度: Final Test Accuracy: 0.9250 | Test loss: 0.2953
'''
class RgcnGraphBuilder(StandaloneGraphBuilder):

    def build_dataset(self, g):

        hg = g
        # category = self.flags.category
        num_classes = self.flags.num_classes

        num_rels = len(hg.canonical_etypes)
        num_of_ntype = len(hg.ntypes)

        # train_mask = hg.nodes[category].data.pop(self.flags.train_mask)
        # test_mask = hg.nodes[category].data.pop(self.flags.test_mask)
        # labels = hg.nodes[category].data.pop(self.flags.label)

        eids = th.arange(g.number_of_edges())
        #eids = np.random.permutation(eids)
        val_size = int(len(eids) * 0.1)
        test_size = int(len(eids) * 0.2)
        # train_size = g.number_of_edges() - val_size - test_size
        # valid_eids = eids[:val_size]
        # test_eids = eids[val_size: val_size + test_size]
        # train_eids = eids[val_size + test_size:]
        
        valid_eids = dgl.contrib.HostMapTensor('valid_eids', eids[:val_size])
        test_eids = dgl.contrib.HostMapTensor('test_eids', eids[val_size: val_size + test_size])
        train_eids = dgl.contrib.HostMapTensor('train_eids', eids[val_size + test_size:])

        # train_idx = th.nonzero(train_mask, as_tuple=False).squeeze()
        # test_idx = th.nonzero(test_mask, as_tuple=False).squeeze()

        # val_idx = train_idx

        node_feats = {}
        for ntype in hg.ntypes:
            if len(hg.nodes[ntype].data) == 0 or self.flags.node_feats is False:
                node_feats[str(hg.get_ntype_id(ntype))] = hg.number_of_nodes(ntype)
            else:
                assert len(hg.nodes[ntype].data) == 1
                feat = hg.nodes[ntype].data.pop(self.flags.feat)
                if feat is not None:
                    feats = HostMapTensor(ntype + '__' + self.flags.feat, feat)
                    node_feats[str(hg.get_ntype_id(ntype))] = feats

        # get target category id
        # category_id = len(hg.ntypes)
        # for i, ntype in enumerate(hg.ntypes):
        #     if ntype == category:
        #         category_id = i
        #     print('{}:{}'.format(i, ntype))

        g = dgl.to_homogeneous(hg)
        ntype_tensor = g.ndata[dgl.NTYPE]
        ntype_tensor.share_memory_()
        etype_tensor = g.edata[dgl.ETYPE]
        etype_tensor = dgl.contrib.HostMapTensor('etype_tensor', etype_tensor)

        typeid_tensor = g.ndata[dgl.NID]
        typeid_tensor.share_memory_()  
        
        


        #ntype_tensor = dgl.contrib.HostMapTensor('ntype_tensor', g.ndata[dgl.NTYPE])
        #etype_tensor = dgl.contrib.HostMapTensor('etype_tensor', g.edata[dgl.ETYPE])
        #typeid_tensor = dgl.contrib.HostMapTensor('typeid_tensor', g.edata[dgl.NID])
        
        # node_ids = th.arange(g.number_of_nodes())

        # # find out the target node ids
        # node_tids = g.ndata[dgl.NTYPE]
        # loc = (node_tids == category_id)
        # target_idx = node_ids[loc]
        # target_idx.share_memory_()
        # train_idx.share_memory_()
        # val_idx.share_memory_()
        # test_idx.share_memory_()

        # # This is a graph with multiple node types, so we want a way to map
        # # our target node from their global node numberings, back to their
        # # numberings within their type. This is used when taking the nodes in a
        # # mini-batch, and looking up their type-specific labels
        # inv_target = th.empty(node_ids.shape,
        #                       dtype=node_ids.dtype)
        # inv_target.share_memory_()
        # inv_target[target_idx] = th.arange(0, target_idx.shape[0],
        #                                    dtype=inv_target.dtype)

        # Create csr/coo/csc formats before launching training processes with multi-gpu.
        # This avoids creating certain formats in each sub-process, which saves momory and CPU.
        g.create_formats_()
        
        g = g.shared_memory('g')

        return g, node_feats, num_of_ntype, num_classes, num_rels, train_eids, valid_eids, test_eids, ntype_tensor, etype_tensor, typeid_tensor


class RgcnTrainer(SamplingGraphTraining):

    def train(self, g, dataset, device, n_gpus, proc_id, **kwargs):

        dev_id = -1 if n_gpus == 0 else device.index
        queue = kwargs['queue'] if n_gpus > 1 else None

        g, node_feats, num_of_ntype, num_classes, num_rels, train_eids, valid_eids, test_eids, ntype_tensor, etype_tensor, typeid_tensor = dataset

        node_tids = ntype_tensor
        world_size = n_gpus

        if n_gpus > 0:
            
            etype_tensor.uva(device)

            for key in node_feats:
                if not isinstance(node_feats[key], int):
                    node_feats[key].uva(device)

        if n_gpus == 1:
            g = g.to(device)

        if n_gpus > 1:

            g = g.uva(device)
            dist_init_method = 'tcp://{master_ip}:{master_port}'.format(
                master_ip='127.0.0.1', master_port=self.flags.master_port)

            th.distributed.init_process_group(backend=self.flags.communication_backend,
                                              init_method=dist_init_method,
                                              world_size=world_size,
                                              rank=proc_id)

        # node features
        # None for one-hot feature, if not none, it should be the feature tensor.
        embed_layer = RelGraphEmbedLayer(dev_id if self.flags.embedding_gpu or not self.flags.dgl_sparse else -1,
                                         dev_id,
                                         g.number_of_nodes(),
                                         node_tids,
                                         num_of_ntype,
                                         node_feats,
                                         self.flags.num_hidden,
                                         dgl_sparse=self.flags.dgl_sparse)

         # 设置目标函数
        loss_fcn = CrossEntropyLoss()

        # create model
        # all model params are in device.
        model = EntityClassify(dev_id,
                               g.number_of_nodes(),
                               self.flags.num_hidden,
                               num_classes,
                               num_rels,
                               num_bases=self.flags.num_bases,
                               num_hidden_layers=self.flags.num_layers - 2,
                               dropout=self.flags.dropout,
                               use_self_loop=self.flags.use_self_loop,
                               low_mem=self.flags.low_mem,
                               layer_norm=self.flags.layer_norm)

        if n_gpus == 1:
            th.cuda.set_device(dev_id)
            model.cuda(dev_id)
            if self.flags.dgl_sparse:
                embed_layer.cuda(dev_id)

        elif n_gpus > 1:
            if dev_id >= 0:
                model.cuda(dev_id)
            model = DistributedDataParallel(model, device_ids=[dev_id], output_device=dev_id)
            if self.flags.dgl_sparse:
                embed_layer.cuda(dev_id)
                if len(list(embed_layer.parameters())) > 0:
                    embed_layer = DistributedDataParallel(embed_layer, device_ids=[dev_id], output_device=dev_id)
            else:
                if len(list(embed_layer.parameters())) > 0:
                    embed_layer = DistributedDataParallel(embed_layer, device_ids=None, output_device=None)

        # optimizer
        dense_params = list(model.parameters())
        if self.flags.node_feats:
            if n_gpus > 1:
                dense_params += list(embed_layer.module.embeds.parameters())
            else:
                dense_params += list(embed_layer.embeds.parameters())
        optimizer = th.optim.Adam(dense_params, lr=self.flags.lr, weight_decay=self.flags.l2norm)

        if self.flags.dgl_sparse:
            all_params = list(model.parameters()) + list(embed_layer.parameters())
            optimizer = th.optim.Adam(all_params, lr=self.flags.lr, weight_decay=self.flags.l2norm)
            if n_gpus > 1 and isinstance(embed_layer, DistributedDataParallel):
                dgl_emb = embed_layer.module.dgl_emb
            else:
                dgl_emb = embed_layer.dgl_emb
            emb_optimizer = dgl.optim.SparseAdam(params=dgl_emb, lr=self.flags.sparse_lr, eps=1e-8) if len(dgl_emb) > 0 else None
        else:
            if n_gpus > 1:
                embs = list(embed_layer.module.node_embeds.parameters())
            else:
                embs = list(embed_layer.node_embeds.parameters())
            emb_optimizer = th.optim.SparseAdam(embs, lr=self.flags.sparse_lr) if len(embs) > 0 else None
        
        ntype_tensor = ntype_tensor.to(device)
        # etype_tensor = etype_tensor.to(device)
        typeid_tensor = typeid_tensor.to(device)
        
        # train_eids = train_eids.to(device)
        # valid_eids = valid_eids.to(device)
        # test_eids = test_eids.to(device)        

        dataset = train_eids, valid_eids, test_eids, device
        dataloader = RgcnTrainingDataLoader(self.flags).init(g, dataset)
        loader, val_loader, test_loader = dataloader

        # training loop
        print("start training...")
        forward_time = []
        backward_time = []

        train_time = 0
        validation_time = 0
        test_time = 0
        last_val_acc = 0.0
        do_test = False

        for epoch in range(self.flags.num_epochs):

            if n_gpus > 1:
                loader.set_epoch(epoch)

            tstart = time.time()
            model.train()
            embed_layer.train()

            # for i, sample_data in enumerate(loader):
            for i, (input_nodes, pos_graph, neg_graph, blocks) in enumerate(loader):

                # input_nodes, seeds, blocks = sample_data
                # # map the seed nodes back to their type-specific ids, so that they
                # # can be used to look up their respective labels
                # seeds = inv_target[seeds]

                for block in blocks:
                    gen_norm(block, ntype_tensor, etype_tensor, typeid_tensor)

                t0 = time.time()
                feats = embed_layer(blocks[0].srcdata[dgl.NID],
                                    blocks[0].srcdata['ntype'],
                                    blocks[0].srcdata['type_id'],
                                    node_feats)
                blocks = [block.long().to(device) for block in blocks]
                # logits = model(blocks, feats)

                pos_graph = pos_graph.to(device)
                neg_graph = neg_graph.to(device)
                batch_pred = model(blocks, feats)
                
                f_step = time.time()
                loss = loss_fcn(batch_pred, pos_graph, neg_graph)


                # loss = F.cross_entropy(logits, labels[seeds])
                # writer.add_scalar('loss', loss, global_step)
                t1 = time.time()
                optimizer.zero_grad()
                if emb_optimizer is not None:
                    emb_optimizer.zero_grad()

                loss.backward()
                if emb_optimizer is not None:
                    emb_optimizer.step()
                optimizer.step()
                t2 = time.time()

                forward_time.append(t1 - t0)
                backward_time.append(t2 - t1)
                # train_acc = th.sum(logits.argmax(dim=1) == labels[seeds]).item() / len(seeds)
                if i % 100 == 0 and proc_id == 0:
                    print("Train Loss: {:.4f}".
                          format(loss.item()))
                # writer.add_scalar('train_acc', train_acc, global_step)
                # global_step += 1

            print("Epoch {:05d}:{:05d} | Train Forward Time(s) {:.4f} | Backward Time(s) {:.4f}".
                  format(epoch, self.flags.num_epochs, forward_time[-1], backward_time[-1]))
            tend = time.time()
            train_time += (tend - tstart)

            # val_acc, val_loss, validation_time = self._evaluate(n_gpus, labels, queue, proc_id, model, embed_layer,
            #                                                 val_loader, node_feats, inv_target, 'Validation')

            # do_test = val_acc > last_val_acc
            # last_val_acc = val_acc

            # if n_gpus > 1:
            #     th.distributed.barrier()
            #     if proc_id == 0:
            #         for i in range(1, n_gpus):
            #             queue.put(do_test)
            #     else:
            #         do_test = queue.get()

            # if epoch == self.flags.num_epochs - 1 or (epoch > 0 and do_test):
            #     test_acc, test_loss, test_time = self._evaluate(n_gpus, labels, queue, proc_id, model, embed_layer,
            #                                                     test_loader, node_feats, inv_target, 'Test')
            #     if n_gpus > 1:
            #         th.distributed.barrier()

        print("{}/{} Mean forward time: {:4f}".format(proc_id, n_gpus,
                                                      np.mean(forward_time[len(forward_time) // 4:])))
        print("{}/{} Mean backward time: {:4f}".format(proc_id, n_gpus,
                                                       np.mean(backward_time[len(backward_time) // 4:])))
        # if proc_id == 0:
        #     print("Final Test Accuracy: {:.4f} | Test loss: {:.4f}".format(test_acc, test_loss))
        #     print("Train {}s, valid {}s, test {}s".format(train_time, validation_time, test_time))

    def _evaluate(self, n_gpus, labels, queue, proc_id, model, embed_layer,
                  data_loader, node_feats, inv_target, mode):

        tstart = time.time()
        time_cost = 0
        acc = 0
        loss = 0
        logits, seeds = evaluate(model, embed_layer,
                                       data_loader, node_feats,
                                       inv_target)
        if queue is not None:
            queue.put((logits, seeds))

        if proc_id == 0:
            loss, acc = self._collect_eval(n_gpus, labels, queue) if queue is not None else \
                (F.cross_entropy(logits, labels[seeds].cpu()).item(), \
                 th.sum(logits.argmax(dim=1) == labels[seeds].cpu()).item() / len(seeds))
            
            print("{} Accuracy: {:.4f} | {} loss: {:.4f}".format(mode, acc, mode, loss))

        tend = time.time()
        time_cost = (tend-tstart)
        return acc, loss, time_cost

    def _collect_eval(self, n_gpus, labels, queue):

        eval_logits = []
        eval_seeds = []
        for i in range(n_gpus):

            log = queue.get()
            eval_l, eval_s = log
            eval_logits.append(eval_l)
            eval_seeds.append(eval_s)

        eval_logits = th.cat(eval_logits)
        eval_seeds = th.cat(eval_seeds)
        eval_loss = F.cross_entropy(eval_logits, labels[eval_seeds].cpu()).item()
        eval_acc = th.sum(eval_logits.argmax(dim=1) == labels[eval_seeds].cpu()).item() / len(eval_seeds)
        return eval_loss, eval_acc

class RgcnTrainingDataLoader(Dataloader):

    def init(self, g, dataset):

        train_eids, valid_eids, test_eids, device = dataset

        # target_idx = target_idx.to(device)

        # 查找有几块GPU
        n_gpus = len(list(map(int, self.flags.gpu.split(','))))

        # 每层邻居数
        fanouts = [int(fanout) for fanout in self.flags.fanout.split(',')]

        sampler = dgl.dataloading.MultiLayerNeighborSampler(fanouts)
        
        loader = dgl.dataloading.EdgeDataLoader(
            g, train_eids, sampler,
            negative_sampler=dgl.dataloading.negative_sampler.Uniform(5),
            batch_size=self.flags.batch_size,
            device=device,
            use_ddp=n_gpus > 1,
            shuffle=True,
            drop_last=False,
            num_workers=self.flags.num_workers)

        val_loader = dgl.dataloading.EdgeDataLoader(
            g, valid_eids, sampler,
            negative_sampler=dgl.dataloading.negative_sampler.Uniform(5),
            batch_size=self.flags.batch_size,
            device=device,
            use_ddp=n_gpus > 1,
            shuffle=False,
            drop_last=False,
            num_workers=self.flags.num_workers)

        test_loader = dgl.dataloading.EdgeDataLoader(
            g, test_eids, sampler,
            negative_sampler=dgl.dataloading.negative_sampler.Uniform(5),
            batch_size=self.flags.batch_size,
            device=device,
            use_ddp=n_gpus > 1,
            shuffle=True,
            drop_last=False,
            num_workers=self.flags.num_workers)

        # loader = dgl.dataloading.NodeDataLoader(
        #     g,
        #     target_idx[train_idx],
        #     sampler,
        #     use_ddp=n_gpus > 1,
        #     device=device if self.flags.num_workers == 0 else None,
        #     batch_size=self.flags.batch_size,
        #     shuffle=True,
        #     drop_last=False,
        #     num_workers=self.flags.num_workers)

        # # validation sampler
        # val_loader = dgl.dataloading.NodeDataLoader(
        #     g,
        #     target_idx[val_idx],
        #     sampler,
        #     use_ddp=n_gpus > 1,
        #     device=device if self.flags.num_workers == 0 else None,
        #     batch_size=self.flags.batch_size,
        #     shuffle=False,
        #     drop_last=False,
        #     num_workers=self.flags.num_workers)

        # # test sampler
        # test_sampler = dgl.dataloading.MultiLayerNeighborSampler([-1] * self.flags.num_layers)
        # test_loader = dgl.dataloading.NodeDataLoader(
        #     g,
        #     target_idx[test_idx],
        #     test_sampler,
        #     use_ddp=n_gpus > 1,
        #     device=device if self.flags.num_workers == 0 else None,
        #     batch_size=self.flags.eval_batch_size,
        #     shuffle=False,
        #     drop_last=False,
        #     num_workers=self.flags.num_workers)

        return loader, val_loader, test_loader


def gen_norm(g, ntype_tensor, etype_tensor, typeid_tensor):
    
    _, v, eid = g.all_edges(form='all')
    _, inverse_index, count = th.unique(v, return_inverse=True, return_counts=True)
    degrees = count[inverse_index]
    norm = th.ones(eid.shape[0], device=eid.device) / degrees
    norm = norm.unsqueeze(1)
    g.edata['norm'] = norm
    
    g.srcdata['ntype'] = ntype_tensor[g.srcdata[dgl.NID]]
    g.edata['etype'] = etype_tensor[eid]
    g.srcdata['type_id'] = typeid_tensor[g.srcdata[dgl.NID]]


def evaluate(model, embed_layer, eval_loader, node_feats, inv_target, ntype_tensor, etype_tensor, typeid_tensor):

    model.eval()
    embed_layer.eval()
    eval_logits = []
    eval_seeds = []

    with th.no_grad():
        th.cuda.empty_cache()
        for i, (input_nodes, pos_graph, neg_graph, blocks) in enumerate(eval_loader):
            
            for block in blocks:
                gen_norm(block, ntype_tensor, etype_tensor, typeid_tensor)

            feats = embed_layer(blocks[0].srcdata[dgl.NID],
                                blocks[0].srcdata['ntype'],
                                blocks[0].srcdata['type_id'],
                                node_feats)
            logits = model(blocks, feats)

            loss_fcn = AUC()
            auc = loss_fcn(logits, pos_graph, neg_graph)
            print("valid auc: {:.4f}".
                          format(auc.item()))

    #         eval_logits.append(logits.cpu())

    eval_logits = th.cat(eval_logits)
    eval_seeds = th.cat(eval_seeds)

    return eval_logits, eval_seeds


class CrossEntropyLoss(nn.Module):

    def forward(self, block_outputs, pos_graph, neg_graph):

        with pos_graph.local_scope():
            pos_graph.ndata['h'] = block_outputs
            pos_graph.apply_edges(fn.u_dot_v('h', 'h', 'score'))
            pos_score = pos_graph.edata['score']
        with neg_graph.local_scope():
            neg_graph.ndata['h'] = block_outputs
            neg_graph.apply_edges(fn.u_dot_v('h', 'h', 'score'))
            neg_score = neg_graph.edata['score']

        score = th.cat([pos_score, neg_score])
        label = th.cat([th.ones_like(pos_score), th.zeros_like(neg_score)]).long()
        loss = F.binary_cross_entropy_with_logits(score, label.float())
        return loss


class AUC(nn.Module):

    def forward(self, block_outputs, pos_graph, neg_graph):

        with pos_graph.local_scope():
            pos_graph.ndata['h'] = block_outputs
            pos_graph.apply_edges(fn.u_dot_v('h', 'h', 'score'))
            pos_score = pos_graph.edata['score']
        with neg_graph.local_scope():
            neg_graph.ndata['h'] = block_outputs
            neg_graph.apply_edges(fn.u_dot_v('h', 'h', 'score'))
            neg_score = neg_graph.edata['score']

        score = th.cat([pos_score, neg_score]).numpy()
        label = th.cat([th.ones_like(pos_score), th.zeros_like(neg_score)]).numpy()
        
        return roc_auc_score(label, score)