|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Accuracy metric.""" |
|
|
|
import datasets |
|
from sklearn.metrics import accuracy_score |
|
|
|
import evaluate |
|
|
|
|
|
_DESCRIPTION = """ |
|
Accuracy is the proportion of correct predictions among the total number of cases processed. It can be computed with: |
|
Accuracy = (TP + TN) / (TP + TN + FP + FN) |
|
Where: |
|
TP: True positive |
|
TN: True negative |
|
FP: False positive |
|
FN: False negative |
|
""" |
|
|
|
|
|
_KWARGS_DESCRIPTION = """ |
|
Args: |
|
predictions (`list` of `int`): Predicted labels. |
|
references (`list` of `int`): Ground truth labels. |
|
normalize (`boolean`): If set to False, returns the number of correctly classified samples. Otherwise, returns the fraction of correctly classified samples. Defaults to True. |
|
sample_weight (`list` of `float`): Sample weights Defaults to None. |
|
|
|
Returns: |
|
accuracy (`float` or `int`): Accuracy score. Minimum possible value is 0. Maximum possible value is 1.0, or the number of examples input, if `normalize` is set to `True`.. A higher score means higher accuracy. |
|
|
|
Examples: |
|
|
|
Example 1-A simple example |
|
>>> accuracy_metric = evaluate.load("accuracy") |
|
>>> results = accuracy_metric.compute(references=[0, 1, 2, 0, 1, 2], predictions=[0, 1, 1, 2, 1, 0]) |
|
>>> print(results) |
|
{'accuracy': 0.5} |
|
|
|
Example 2-The same as Example 1, except with `normalize` set to `False`. |
|
>>> accuracy_metric = evaluate.load("accuracy") |
|
>>> results = accuracy_metric.compute(references=[0, 1, 2, 0, 1, 2], predictions=[0, 1, 1, 2, 1, 0], normalize=False) |
|
>>> print(results) |
|
{'accuracy': 3.0} |
|
|
|
Example 3-The same as Example 1, except with `sample_weight` set. |
|
>>> accuracy_metric = evaluate.load("accuracy") |
|
>>> results = accuracy_metric.compute(references=[0, 1, 2, 0, 1, 2], predictions=[0, 1, 1, 2, 1, 0], sample_weight=[0.5, 2, 0.7, 0.5, 9, 0.4]) |
|
>>> print(results) |
|
{'accuracy': 0.8778625954198473} |
|
""" |
|
|
|
|
|
_CITATION = """ |
|
@article{scikit-learn, |
|
title={Scikit-learn: Machine Learning in {P}ython}, |
|
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. |
|
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. |
|
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and |
|
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, |
|
journal={Journal of Machine Learning Research}, |
|
volume={12}, |
|
pages={2825--2830}, |
|
year={2011} |
|
} |
|
""" |
|
|
|
|
|
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) |
|
class Accuracy(evaluate.Metric): |
|
def _info(self): |
|
return evaluate.MetricInfo( |
|
description=_DESCRIPTION, |
|
citation=_CITATION, |
|
inputs_description=_KWARGS_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"predictions": datasets.Sequence(datasets.Value("int32")), |
|
"references": datasets.Sequence(datasets.Value("int32")), |
|
} |
|
if self.config_name == "multilabel" |
|
else { |
|
"predictions": datasets.Value("int32"), |
|
"references": datasets.Value("int32"), |
|
} |
|
), |
|
reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html"], |
|
) |
|
|
|
def _compute(self, predictions, references, normalize=True, sample_weight=None): |
|
return { |
|
"accuracy": float( |
|
accuracy_score(references, predictions, normalize=normalize, sample_weight=sample_weight) |
|
) |
|
} |
|
|