Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import spaces
|
3 |
+
from transformers import AutoProcessor, LlavaForConditionalGeneration
|
4 |
+
# from qwen_vl_utils import process_vision_info
|
5 |
+
import torch
|
6 |
+
from PIL import Image
|
7 |
+
import subprocess
|
8 |
+
from datetime import datetime
|
9 |
+
import numpy as np
|
10 |
+
import os
|
11 |
+
|
12 |
+
os.environ["no_proxy"] = "localhost,127.0.0.1,::1"
|
13 |
+
|
14 |
+
|
15 |
+
def array_to_image_path(image_array):
|
16 |
+
# Convert numpy array to PIL Image
|
17 |
+
img = Image.fromarray(np.uint8(image_array))
|
18 |
+
|
19 |
+
# Generate a unique filename using timestamp
|
20 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
21 |
+
filename = f"image_{timestamp}.png"
|
22 |
+
|
23 |
+
# Save the image
|
24 |
+
img.save(filename)
|
25 |
+
|
26 |
+
# Get the full path of the saved image
|
27 |
+
full_path = os.path.abspath(filename)
|
28 |
+
|
29 |
+
return full_path
|
30 |
+
|
31 |
+
|
32 |
+
cuda = 1
|
33 |
+
model_id = "huangfx1020/human_llama3_8b"
|
34 |
+
models = {
|
35 |
+
"HumanLlaVA-8B": LlavaForConditionalGeneration.from_pretrained("huangfx1020/human_llama3_8b", torch_dtype=torch.float16, low_cpu_mem_usage=True ).to(cuda).eval()
|
36 |
+
}
|
37 |
+
|
38 |
+
# processors = {
|
39 |
+
# "Qwen/Qwen2-VL-2B-Instruct": AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True)
|
40 |
+
# }
|
41 |
+
processors = {
|
42 |
+
"HumanLlaVA-8B": AutoProcessor.from_pretrained("huangfx1020/human_llama3_8b")
|
43 |
+
}
|
44 |
+
DESCRIPTION = "[HumanLlaVA Demo](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct)"
|
45 |
+
|
46 |
+
kwargs = {}
|
47 |
+
kwargs['torch_dtype'] = torch.bfloat16
|
48 |
+
|
49 |
+
|
50 |
+
# @spaces.GPU
|
51 |
+
def run_example(image, text_input=None, model_id="HumanLlaVA-8B"):
|
52 |
+
image_path = array_to_image_path(image)
|
53 |
+
|
54 |
+
print(image_path)
|
55 |
+
model = models[model_id]
|
56 |
+
processor = processors[model_id]
|
57 |
+
raw_image = Image.open(image_path)
|
58 |
+
inputs = processor(images=raw_image, text=prompt, return_tensors='pt').to(cuda, torch.float16)
|
59 |
+
|
60 |
+
# generated_ids = model.generate(**inputs, max_new_tokens=128)
|
61 |
+
# generated_ids_trimmed = [
|
62 |
+
# out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
63 |
+
# ]
|
64 |
+
# output_text = processor.batch_decode(
|
65 |
+
# generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
66 |
+
# )
|
67 |
+
output = model.generate(**inputs, max_new_tokens=400, do_sample=False)
|
68 |
+
print(output)
|
69 |
+
predict = processor.decode(output[0][:], skip_special_tokens=False)
|
70 |
+
print(predict)
|
71 |
+
|
72 |
+
return predict
|
73 |
+
|
74 |
+
css = """
|
75 |
+
#output {
|
76 |
+
height: 500px;
|
77 |
+
overflow: auto;
|
78 |
+
border: 1px solid #ccc;
|
79 |
+
}
|
80 |
+
"""
|
81 |
+
|
82 |
+
with gr.Blocks(css=css) as demo:
|
83 |
+
gr.Markdown(DESCRIPTION)
|
84 |
+
with gr.Tab(label="HumanLlaVA-8B Input"):
|
85 |
+
with gr.Row():
|
86 |
+
with gr.Column():
|
87 |
+
input_img = gr.Image(label="Input Picture")
|
88 |
+
model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value="HumanLlaVA-8B")
|
89 |
+
text_input = gr.Textbox(label="Question")
|
90 |
+
submit_btn = gr.Button(value="Submit")
|
91 |
+
with gr.Column():
|
92 |
+
output_text = gr.Textbox(label="Output Text")
|
93 |
+
|
94 |
+
submit_btn.click(run_example, [input_img, text_input, model_selector], [output_text])
|
95 |
+
|
96 |
+
demo.queue(api_open=False)
|
97 |
+
demo.launch(debug=True)
|