poudel commited on
Commit
353c257
1 Parent(s): dca936c

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +42 -0
app.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import gradio as gr
3
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
4
+ import torch
5
+
6
+ # Load the model and tokenizer from Hugging Face
7
+ model_name = "poudel/Depression_and_Non-Depression_Classifier" # Replace with your Hugging Face model name
8
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
9
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
10
+
11
+
12
+ # Define the prediction function
13
+ def predict(text):
14
+ # Tokenize the input text
15
+ inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=128)
16
+
17
+ # Get model predictions
18
+ with torch.no_grad():
19
+ outputs = model(**inputs)
20
+
21
+ # Convert logits to probabilities
22
+ probabilities = torch.softmax(outputs.logits, dim=-1)
23
+
24
+ # Get the predicted class (0 or 1)
25
+ predicted_class = torch.argmax(probabilities, dim=1).item()
26
+
27
+ # Map the predicted class to the label (0 = Depression, 1 = Non-depression)
28
+ label_mapping = {0: "Depression", 1: "Non-depression"}
29
+
30
+ return label_mapping[predicted_class]
31
+
32
+ # Create a Gradio interface
33
+ interface = gr.Interface(
34
+ fn=predict, # The function to be called for predictions
35
+ inputs=gr.Textbox(lines=2, placeholder="Enter some text here..."), # Input textbox for the user
36
+ outputs="text", # Output is the predicted class as text
37
+ title="Depression Classification", # Title of the app
38
+ description="Enter a sentence to classify it as 'Depression' or 'Non-depression'.", # Short description
39
+ )
40
+
41
+ # Launch the Gradio app
42
+ interface.launch()