1-ARIjitS commited on
Commit
b5d3b7f
1 Parent(s): 9ba5cad

app updated

Browse files
Files changed (1) hide show
  1. app.py +39 -2
app.py CHANGED
@@ -1,4 +1,41 @@
1
  import streamlit as st
 
 
 
2
 
3
- x = st.slider('Select a value')
4
- st.write(x, 'squared is', x * x)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
+ from PIL import Image
3
+ import numpy as np
4
+ import joblib
5
 
6
+ # # Load your trained model (replace 'model.pkl' with your model filename)
7
+ # model = joblib.load('model.pkl')
8
+
9
+ # Function to preprocess the image for prediction
10
+ def preprocess_image(image):
11
+ # Convert the image to the format your model expects
12
+ # This is an example, modify as necessary
13
+ image = image.resize((224, 224)) # Resize the image
14
+ image_array = np.array(image) / 255.0 # Normalize the image
15
+ return image_array.reshape(1, 224, 224, 3) # Adjust shape for model
16
+
17
+ # Streamlit UI
18
+ st.title("Seizure Prediction App")
19
+ st.write("Upload an image to predict if it indicates a seizure or not.")
20
+
21
+ # Image upload
22
+ uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
23
+
24
+ if uploaded_file is not None:
25
+ # Display the uploaded image
26
+ image = Image.open(uploaded_file)
27
+ st.image(image, caption='Uploaded Image', use_column_width=True)
28
+
29
+ # Preprocess the image
30
+ processed_image = preprocess_image(image)
31
+
32
+ # Button to predict
33
+ if st.button("Predict"):
34
+ # Make prediction
35
+ prediction = model.predict(processed_image)
36
+
37
+ # Display result
38
+ if prediction[0] == 1:
39
+ st.success("The model predicts: Seizure detected!")
40
+ else:
41
+ st.success("The model predicts: No seizure detected.")