File size: 13,297 Bytes
3d1ef0a
d4d76e3
c889936
d4d76e3
 
 
 
3d1ef0a
 
d4d76e3
107a1d1
 
3d1ef0a
 
 
 
d4d76e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
218fb40
d4d76e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d1ef0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4d76e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d1ef0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4d76e3
 
3d1ef0a
d4d76e3
3d1ef0a
d4d76e3
3d1ef0a
 
 
 
 
 
 
d4d76e3
 
3d1ef0a
 
d4d76e3
3d1ef0a
 
 
 
d4d76e3
3d1ef0a
 
d4d76e3
3d1ef0a
 
 
 
d4d76e3
 
3d1ef0a
 
 
 
 
 
 
 
 
d4d76e3
3d1ef0a
 
 
 
 
 
 
 
d4d76e3
3d1ef0a
 
d4d76e3
3d1ef0a
 
d4d76e3
3d1ef0a
 
 
 
 
d4d76e3
3d1ef0a
 
 
d4d76e3
3d1ef0a
 
 
d4d76e3
 
107a1d1
 
 
 
 
3d1ef0a
107a1d1
3d1ef0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4d76e3
 
3d1ef0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4d76e3
 
 
 
 
 
 
 
 
 
c889936
3d1ef0a
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
import os

import streamlit as st
import hashlib
import uuid
import time
import json
import numpy as np
from concrete.ml.sklearn import SGDClassifier

from blockchain import Blockchain, print_blockchain_details

import watermarking
from watermarking import watermark_model


def generate_mock_hash():
    return hashlib.sha256(str(time.time()).encode()).hexdigest()


from utils import (
    CLIENT_DIR,
    CURRENT_DIR,
    DEPLOYMENT_DIR,
    KEYS_DIR,
    INPUT_BROWSER_LIMIT,
    clean_directory,
    SERVER_DIR,
)

from concrete.ml.deployment import FHEModelClient

st.set_page_config(layout="wide")

st.sidebar.title("Contact")
st.sidebar.info(
    """
    - Reda Bellafqira
    - Mehdi Ben Ghali
    - Pierre-Elisée Flory
    - Mohammed Lansari
    - Thomas Winninger
    """
)

st.title("Zamark: Secure Watermarking Service")

# st.image(
#     "llm_watermarking.png",
#     caption="A Watermark for Large Language Models (https://doi.org/10.48550/arXiv.2301.10226)",
# )


def todo():
    st.warning("Not implemented yet", icon="⚠️")


def key_gen_fn(client_id):
    """
    Generate keys for a given user. The keys are saved in KEYS_DIR

    !!! needs a model in DEPLOYMENT_DIR as "client.zip" !!!
    Args:
        client_id (str): The client_id, retrieved from streamlit
    """
    clean_directory()

    client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{client_id}")
    client.load()

    # Creates the private and evaluation keys on the client side
    client.generate_private_and_evaluation_keys()

    # Get the serialized evaluation keys
    serialized_evaluation_keys = client.get_serialized_evaluation_keys()
    assert isinstance(serialized_evaluation_keys, bytes)

    # Save the evaluation key
    evaluation_key_path = KEYS_DIR / f"{client_id}/evaluation_key"
    with evaluation_key_path.open("wb") as f:
        f.write(serialized_evaluation_keys)

    # show bit of key
    serialized_evaluation_keys_shorten_hex = serialized_evaluation_keys.hex()[
        :INPUT_BROWSER_LIMIT
    ]
    # shpw len of key
    # f"{len(serialized_evaluation_keys) / (10**6):.2f} MB"
    with st.expander("Generated keys"):
        st.write(f"{len(serialized_evaluation_keys) / (10**6):.2f} MB")
        st.code(serialized_evaluation_keys_shorten_hex)

    st.success("Keys have been generated!", icon="✅")


# def gen_trigger_set(client_id, hf_id):
#     # input : random images seeded by client_id
#     # labels : binary array of the id
#     watermark_uuid = uuid.uuid1()
#     hash = hashlib.sha256()
#     hash.update(client_id + str(watermark_uuid))
#     client_seed = hash.digest()
#     hash = hashlib.sha256()
#     hash.update(hf_id + str(watermark_uuid))
#     hf_seed = hash.digest()
#
#     trigger_set_size = 128
#
#     trigger_set_client = [
#         {"input": 1, "label": digit} for digit in encode_id(client_id, trigger_set_size)
#     ]
#
#     todo()
#
#
# def encode_id(ascii_rep, size=128):
#     """Encode a string id to a string of bits
#
#     Args:
#         ascii_rep (_type_): The id string
#         size (_type_): The size of the output bit string
#
#     Returns:
#         _type_: a string of bits
#     """
#     return "".join([format(ord(x), "b").zfill(8) for x in client_id])[:size]


def decode_id(binary_rep):
    """Decode a string of bits to an ascii string

    Args:
        binary_rep (_type_): the binary string

    Returns:
        _type_: an ascii string
    """
    # Initializing a binary string in the form of
    # 0 and 1, with base of 2
    binary_int = int(binary_rep, 2)
    # Getting the byte number
    byte_number = binary_int.bit_length() + 7 // 8
    # Getting an array of bytes
    binary_array = binary_int.to_bytes(byte_number, "big")
    # Converting the array into ASCII text
    ascii_text = binary_array.decode()
    # Getting the ASCII value
    return ascii_text


# def compare_id(client_id, binary_triggert_set_result):
#     """Compares the string id with the labels of the trigger set on the tested API
#
#     Args:
#         client_id (_type_): the ascii string
#         binary_triggert_set_result (_type_): the binary string
#
#     Returns:
#         _type_: _description_
#     """
#     ground_truth = encode_id(client_id, 128)
#
#     correct_bit = 0
#     for true_bit, real_bit in zip(ground_truth, binary_triggert_set_result):
#         if true_bit != real_bit:
#             correct_bit += 1
#
#     return correct_bit / len(binary_triggert_set_result)

#
# def watermark(model, trigger_set):
#     """Watermarking function
#
#     Args:
#         model (_type_): The model to watermark
#         trigger_set (_type_): the trigger set
#     """
#     X_trigger, y_trigger = trigger_set
#     watermarked_model = watermarking.watermark_model(model, X_trigger, y_trigger)
#
#     model_file_path = SERVER_DIR / "watermarked_model"
#     trigger_set_file_path = SERVER_DIR / "trigger_set"
#
#
#
#     # TODO: remove once model correctly watermarked "Reda continue"
#     model_file_path.touch()
#     trigger_set_file_path.touch()
#
#     # Once the model is watermarked and dumped to files (model + trigger set), the user can download them
#     with open(model_file_path, "rb") as model_file:
#         st.download_button(
#             label="Download the watermarked file",
#             data=model_file,
#             mime="application/octet-stream",
#         )
#     with open(trigger_set_file_path, "rb") as trigger_set_file:
#         st.download_button(
#             label="Download the triggert set",
#             data=trigger_set_file,
#             mime="application/octet-stream",
#         )


st.header("Client Configuration", divider=True)

# client_id = st.text_input("Identification string", "team-8-uuid")

X_trigger, y_trigger = None, None
if st.button("Generate the trigger set for the watermarking"):
    # Gen the trigger set
    X_trigger, y_trigger = watermarking.gen_trigger_set()
    # watermarked_model = watermarking.watermark_model(model, X_trigger, y_trigger)
    np.save("x_trigger", X_trigger)
    np.save("y_trigger", y_trigger)


    # Gen data
    x_train, y_train, x_test, y_test =   watermarking.gen_database()

    np.save("x_train", x_train)
    np.save("y_train", y_train)
    np.save("x_test", x_test)
    np.save("y_test", y_test)

    # Afficher un message de succès
    st.success("Trigger set generated and data saved successfully!")

    # Optionnel : Afficher des informations supplémentaires
    st.write(f"Trigger set shape: X={X_trigger.shape}, y={y_trigger.shape}")
    st.write(f"Training data shape: X={x_train.shape}, y={y_train.shape}")
    st.write(f"Test data shape: X={x_test.shape}, y={y_test.shape}")


st.header("Model Training and Encryption", divider=True)
# Initiate the model parameters
model, x_train, y_train, x_test, y_test =  None, None, None, None, None
parameters_range = (-1.0, 1.0)
if st.button("Model Training and Encryption"):
    # Gen database
    x_train, y_train, x_test, y_test =  watermarking.gen_database()
    # Train the model
    # model =  watermarking.train_model(x_train, y_train)

    model = SGDClassifier(
        random_state=42,
        max_iter=100,
        fit_encrypted=True,
        parameters_range=parameters_range,
        penalty=None,
        learning_rate="constant",
        verbose=1)

    model.coef_ = np.load("model_coef.npy")
    model.intercept_ = np.load("model_intercept.npy")

    # Afficher un message de succès
    st.success("Model training and encryption completed successfully!")

    # Afficher des informations supplémentaires
    st.write("Model Information:")
    st.write(f"- Type: {type(model).__name__}")
    st.write(f"- Number of features: {model.coef_.shape[1]}")
    st.write(f"- Parameters range: {parameters_range}")

    st.write("\nData Information:")
    st.write(f"- Training set shape: X={x_train.shape}, y={y_train.shape}")
    st.write(f"- Test set shape: X={x_test.shape}, y={y_test.shape}")

    # Optionnel : Afficher un aperçu des coefficients du modèle
    st.write("\nModel Coefficients Preview:")
    st.write(model.coef_[:5])  # Affiche les 5 premiers coefficients







st.header("Model Watermarking", divider=True)

# if st.button("Model Watermarking"):
#
#     encrypted_model = st.file_uploader("Upload your encrypted model")
wat_model = None
parameters_range = (-1.0, 1.0)
if st.button("Model Watermarking"):
    # watermark(None, None)
    # wat_model = watermarking.watermark_model(model, X_trigger, y_trigger)

    wat_model = SGDClassifier(
        random_state=42,
        max_iter=100,
        fit_encrypted=True,
        parameters_range=parameters_range,
        penalty=None,
        learning_rate="constant",
        verbose=1)

    wat_model.coef_ = np.load("wat_model_coef.npy")
    wat_model.intercept_ = np.load("wat_model_intercept.npy")

    # Afficher un message de succès
    st.success("Model watermarking completed successfully!")

    # Afficher des informations sur le modèle tatoué
    st.write("Watermarked Model Information:")
    st.write(f"- Type: {type(wat_model).__name__}")
    st.write(f"- Number of features: {wat_model.coef_.shape[1]}")
    st.write(f"- Parameters range: {parameters_range}")

#
#
# st.header("Watermarking evaluation", divider=True)
# parameters_range = (-1.0, 1.0)
# if st.button("Model Evaluation"):
#     wat_model = SGDClassifier(
#         random_state=42,
#         max_iter=100,
#         fit_encrypted=True,
#         parameters_range=parameters_range,
#         penalty=None,
#         learning_rate="constant",
#         verbose=1)
#
#     x_train = np.load("x_train.npy")
#     y_train = np.load("y_train.npy")
#     x_test = np.load("x_test.npy")
#     y_test = np.load("y_test.npy")
#
#     wat_model.coef_ = np.load("wat_model_coef.npy")
#     wat_model.intercept_ = np.load("wat_model_intercept.npy")
#

    # wat_model.fit(X_trigger, y_trigger, fhe="simulate")
    # wat_model.compile(x_train)
    # watermarking.evaluate(wat_model, x_train, y_train, x_test, y_test, X_trigger, y_trigger)



st.header("Update Blockchain", divider=True)

# Initialize session state to store the block data
if 'block_data' not in st.session_state:
    st.session_state.block_data = None

# Button to update the blockchain
if st.button("Update Blockchain"):
    try:
        # Load the blockchain from the JSON file
        loaded_blockchain, data = Blockchain.load_from_file("blockchain.json")

        # Check if the loaded blockchain is valid
        is_valid = loaded_blockchain.is_chain_valid()
        st.write(f"Loaded blockchain is valid: {is_valid}")

        if not is_valid:
            st.warning("The loaded blockchain is not valid. Please check data integrity.")
        else:
            parameters_range = (-1.0, 1.0)
            wat_model = SGDClassifier(
                random_state=42,
                max_iter=100,
                fit_encrypted=True,
                parameters_range=parameters_range,
                penalty=None,
                learning_rate="constant",
                verbose=1)

            wat_model.coef_ = np.load("wat_model_coef.npy")
            wat_model.intercept_ = np.load("wat_model_intercept.npy")

            X_trigger = np.load("x_trigger.npy")
            y_trigger = np.load("y_trigger.npy")

            watermarked_model_hash = watermarking.get_model_hash(wat_model)
            trigger_set_hf = watermarking.get_trigger_hash(X_trigger, y_trigger)
            trigger_set_client = watermarking.get_trigger_hash(X_trigger, y_trigger)

            # Add a new block to the loaded blockchain
            new_block = loaded_blockchain.add_block(trigger_set_hf, trigger_set_client, watermarked_model_hash)

            # Save the updated blockchain
            loaded_blockchain.save_to_file("blockchain.json")

            # Update session data
            st.session_state.block_data = new_block.to_dict()

            st.success("Blockchain updated successfully!")

            # Display information about the new block
            st.subheader("New Block Information")
            st.write(f"Block ID: {new_block.counter}")
            st.write(f"Timestamp: {new_block.timestamp}")
            st.write(f"Previous Hash: {new_block.previous_hash}")
            st.write(f"Current Hash: {new_block.hash}")

            # Display blockchain statistics
            st.subheader("Blockchain Statistics")
            st.write(f"Total Blocks: {len(loaded_blockchain.chain)}")
            st.write(f"Blockchain File Size: {os.path.getsize('blockchain.json') / 1024:.2f} KB")

    except Exception as e:
        st.error(f"An error occurred while updating the blockchain: {str(e)}")

# Display the JSON if block_data exists
if st.session_state.block_data:
    st.subheader("Latest Block Data (JSON)")

    # Convert the data to a formatted JSON string
    block_json = json.dumps(st.session_state.block_data, indent=2)

    # Display the JSON
    st.code(block_json, language='json')

    # Option to download the entire blockchain
    st.subheader("Download Blockchain")
    with open("blockchain.json", "rb") as file:
        btn = st.download_button(
            label="Download Blockchain JSON",
            data=file,
            file_name="blockchain.json",
            mime="application/json"
        )