File size: 5,740 Bytes
339957b 8c0c4fd 339957b c9c2be1 3226c21 3d28d5d 339957b c9c2be1 339957b c9c2be1 f3084ee c9c2be1 339957b 3226c21 c9c2be1 339957b 61746b0 339957b c9c2be1 339957b c9c2be1 339957b c9c2be1 4b17466 c9c2be1 4b17466 c9c2be1 4b17466 339957b 361a068 2a3f9e7 3ded6ed 339957b dfb46ca 339957b ff2b913 339957b ff2b913 339957b ff2b913 4b17466 4976e45 339957b 532ff62 7b1d12f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
from __future__ import absolute_import, division, print_function, unicode_literals
import gradio as gr
import os
import librosa
import librosa.display
import numpy as np
import shutil
import random
import string
import warnings
import datetime
import tensorflow as tf
from tqdm import tqdm
from keras.models import Sequential
from keras.layers import Dense
from keras.utils import to_categorical
from keras.layers import Flatten, Dropout, Activation
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import BatchNormalization
from sklearn.model_selection import train_test_split
from tqdm import tqdm
from save_data import flag
warnings.filterwarnings("ignore")
timestamp = datetime.datetime.now()
current_date = timestamp.strftime('%d-%m-%Y')
current_time = timestamp.strftime('%I:%M:%S')
IP = ''
cwd = os.getcwd()
classLabels = ('Angry', 'Fear', 'Disgust', 'Happy', 'Sad', 'Surprised', 'Neutral')
numLabels = len(classLabels)
in_shape = (39,216)
model = Sequential()
model.add(Conv2D(8, (13, 13), input_shape=(in_shape[0], in_shape[1], 1)))
model.add(BatchNormalization(axis=-1))
model.add(Activation('relu'))
model.add(Conv2D(8, (13, 13)))
model.add(BatchNormalization(axis=-1))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 1)))
model.add(Conv2D(8, (3, 3)))
model.add(BatchNormalization(axis=-1))
model.add(Activation('relu'))
model.add(Conv2D(8, (1, 1)))
model.add(BatchNormalization(axis=-1))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 1)))
model.add(Flatten())
model.add(Dense(64))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(numLabels, activation='softmax'))
model.compile(loss='binary_crossentropy', optimizer='adam',
metrics=['accuracy'])
model.load_weights('speech_emotion_detection_ravdess_savee.h5')
def selected_audio(audio):
try:
if audio and audio != 'Please select any of the following options':
post_file_name = audio.lower() + '.wav'
filepath = os.path.join("pre_recoreded",post_file_name)
if os.path.exists(filepath):
print("SELECT file name => ",filepath)
result = predict_speech_emotion(filepath)
print("result = ",result)
return result
except Exception as e:
print(e)
return "ERROR"
def recorded_audio(audio):
get_audio_name = ''
final_output = ''
if audio:
get_audio_name = ''.join([random.choice(string.ascii_letters + string.digits) for n in range(5)])
get_audio_name = get_audio_name + '.wav'
audio_file_path = audio.name
final_output = predict_speech_emotion(audio_file_path)
flag(audio_file_path,get_audio_name,final_output)
return final_output
else:
raise gr.Error("Please record audio first!!!!")
def predict_speech_emotion(filepath):
if os.path.exists(filepath):
print("last file name => ",filepath)
X, sample_rate = librosa.load(filepath, res_type='kaiser_best',duration=2.5,sr=22050*2,offset=0.5)
sample_rate = np.array(sample_rate)
mfccs = librosa.feature.mfcc(y=X, sr=sample_rate, n_mfcc=39)
feature = mfccs
feature = feature.reshape(39, 216, 1)
# np_array = np.array([feature])
np_array = np.array([feature])
prediction = model.predict(np_array)
np_argmax = np.argmax(prediction)
result = classLabels[np_argmax]
return result
def return_audio_clip(audio_text):
post_file_name = audio_text.lower() + '.wav'
filepath = os.path.join("pre_recoreded",post_file_name)
return filepath
with gr.Blocks(css=".gradio-container {background-color: lightgray;} #btn {background-color: orange;}") as blocks:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>"
+ "Audio Emotion Detection"
+ "</h1>")
with gr.Row():
with gr.Column():
input_audio_text = gr.Dropdown(label="Input Audio",choices=["Please select any of the following options","Angry", "Happy", "Sad", "Disgust","Fear", "Surprise", "Neutral"],value='Please select any of the following options',interactive=True)
audio_ui=gr.Audio()
input_audio_text.change(return_audio_clip,input_audio_text,audio_ui)
output_text = gr.Textbox(label="Detected Emotion!")
sub_btn = gr.Button("Detect Emotion",elem_id="btn")
with gr.Column():
audio=gr.Audio(label="Recored audio",source="microphone", type="file")
recorded_text = gr.Textbox(label="Detected Emotion!")
with gr.Column():
sub_btn2 = gr.Button("Detect Emotion",elem_id="btn")
gr.Markdown("""<p style='text-align: center;'>Feel free to give us your <a href="https://www.pragnakalp.com/contact/" target="_blank">feedback</a> and contact us
at <a href="mailto:letstalk@pragnakalp.com" target="_blank">letstalk@pragnakalp.com</a> if you want to have your own Speech emotion detection system.
We are just one click away. And don't forget to check out more interesting
<a href="https://www.pragnakalp.com/services/natural-language-processing-services/" target="_blank">NLP services</a> we are offering.</p>
<p style='text-align: center;'>Developed by: <a href="https://www.pragnakalp.com" target="_blank">Pragnakalp Techlabs</a></p>""")
sub_btn.click(selected_audio, inputs=input_audio_text, outputs=output_text)
sub_btn2.click(recorded_audio, inputs=audio, outputs=recorded_text)
blocks.launch() |