pragnakalp's picture
Upload app.py
339957b
raw
history blame
5.82 kB
from __future__ import absolute_import, division, print_function, unicode_literals
from flask import Flask, make_response, render_template, request, jsonify, redirect, url_for, send_from_directory
from flask_cors import CORS
import sys
import os
import librosa
import librosa.display
import numpy as np
from datetime import date
import re
import json
import email
import csv
import datetime
import smtplib
import ssl
from email.mime.text import MIMEText
import time
import pytz
import requests
import pyaudio
import wave
import shutil
import warnings
import tensorflow as tf
import gradio as gr
from keras.models import Sequential
from keras.layers import Dense
from keras.utils import to_categorical
from keras.layers import Flatten, Dropout, Activation
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import BatchNormalization
from sklearn.model_selection import train_test_split
from tqdm import tqdm
warnings.filterwarnings("ignore")
timestamp = datetime.datetime.now()
current_date = timestamp.strftime('%d-%m-%Y')
current_time = timestamp.strftime('%I:%M:%S')
IP = ''
cwd = os.getcwd()
classLabels = ('Angry', 'Fear', 'Disgust', 'Happy', 'Sad', 'Surprised', 'Neutral')
numLabels = len(classLabels)
in_shape = (39,216)
model = Sequential()
model.add(Conv2D(8, (13, 13), input_shape=(in_shape[0], in_shape[1], 1)))
model.add(BatchNormalization(axis=-1))
model.add(Activation('relu'))
model.add(Conv2D(8, (13, 13)))
model.add(BatchNormalization(axis=-1))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 1)))
model.add(Conv2D(8, (3, 3)))
model.add(BatchNormalization(axis=-1))
model.add(Activation('relu'))
model.add(Conv2D(8, (1, 1)))
model.add(BatchNormalization(axis=-1))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 1)))
model.add(Flatten())
model.add(Dense(64))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(numLabels, activation='softmax'))
model.compile(loss='binary_crossentropy', optimizer='adam',
metrics=['accuracy'])
# print(model.summary(), file=sys.stderr)
model.load_weights('speech_emotion_detection_ravdess_savee.h5')
# app = Flask(__name__)
# app._static_folder = os.path.join( "/home/ubuntu/Desktop/nlpdemos/server_demos/speech_emotion/static" )
def selected_audio(audio):
if audio and audio != 'Please select any of the following options':
post_file_name = audio.lower() + '.wav'
filepath = os.path.join("pre_recoreded",post_file_name)
if os.path.exists(filepath):
print("SELECT file name => ",filepath)
result = predict_speech_emotion(filepath)
print("result = ",result)
return result
def recorded_audio(audio):
try:
fileList = os.listdir('recorded_audio')
new_wav_file = ""
if(fileList):
filename_list = []
for i in fileList:
filename = i.split('.')[0]
filename_list.append(int(filename))
max_file = max(filename_list)
new_wav_file = int(max_file) + 1
else:
new_wav_file="1"
new_wav_file = str(new_wav_file) + ".wav"
# filepath = os.path.join('recorded_audio', new_wav_file)
# shutil.move(recorded_audio, filepath)
filepath = 'recorded_audio/22.wav'
result = predict_speech_emotion(audio.name)
return result
except Exception as e:
print(e)
return "ERROR"
def predict_speech_emotion(filepath):
if os.path.exists(filepath):
print("last file name => ",filepath)
X, sample_rate = librosa.load(filepath, res_type='kaiser_best',duration=2.5,sr=22050*2,offset=0.5)
sample_rate = np.array(sample_rate)
mfccs = librosa.feature.mfcc(y=X, sr=sample_rate, n_mfcc=39)
feature = mfccs
feature = feature.reshape(39, 216, 1)
# np_array = np.array([feature])
np_array = np.array([feature])
prediction = model.predict(np_array)
np_argmax = np.argmax(prediction)
result = classLabels[np_argmax]
return result
# demo = gr.Interface(
# fn=send_audio,
# inputs=gr.Audio(source="microphone", type="filepath"),
# outputs="text")
# demo.launch()
# selected_audio = gr.Dropdown(["Angry", "Happy", "Sad", "Disgust","Fear", "Surprise", "Neutral"],
# lable = "Input Audio")
# audio_ui=gr.Audio()
# text = gr.Textbox()
# demo = gr.Interface(
# fn=send_audio,
# inputs=selected_audio,
# outputs=[audio_ui,text])
# demo.launch()
def return_audio_clip(audio_text):
post_file_name = audio_text.lower() + '.wav'
filepath = os.path.join("pre_recoreded",post_file_name)
return filepath
with gr.Blocks() as demo:
gr.Markdown("Select audio or record audio")
with gr.Row():
with gr.Column():
input_audio_text = gr.Dropdown(["Please select any of the following options","Angry", "Happy", "Sad", "Disgust","Fear", "Surprise", "Neutral"],
lable = "Input Audio",interactive=True)
audio_ui=gr.Audio()
input_audio_text.change(return_audio_clip,input_audio_text,audio_ui)
output_text = gr.Textbox(lable="Prdicted emotion")
sub_btn = gr.Button("Submit")
with gr.Column():
audio=gr.Audio(source="microphone", type="file",labele="Recored audio")
recorded_text = gr.Textbox(lable="Prdicted emotion")
with gr.Column():
sub_btn2 = gr.Button("Submit")
sub_btn.click(selected_audio, inputs=input_audio_text, outputs=output_text)
sub_btn2.click(recorded_audio, inputs=audio, outputs=recorded_text)
demo.launch()