prithivMLmods commited on
Commit
f366c08
·
verified ·
1 Parent(s): caaf3eb

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +201 -0
app.py ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ #patch 0.01 ()
3
+ # Permission is hereby granted, free of charge, to any person obtaining a copy
4
+ # of this software and associated documentation files (the "Software"), to deal
5
+ # in the Software without restriction, including without limitation the rights
6
+ # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
7
+ # copies of the Software, and to permit persons to whom the Software is
8
+ # furnished to do so, subject to the following conditions:
9
+ #
10
+ # ..
11
+ import os
12
+ import random
13
+ import uuid
14
+
15
+ import gradio as gr
16
+ import numpy as np
17
+ from PIL import Image
18
+ import spaces
19
+ import torch
20
+ from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
21
+
22
+ DESCRIPTION = """
23
+
24
+
25
+ """
26
+
27
+ def save_image(img):
28
+ unique_name = str(uuid.uuid4()) + ".png"
29
+ img.save(unique_name)
30
+ return unique_name
31
+
32
+ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
33
+ if randomize_seed:
34
+ seed = random.randint(0, MAX_SEED)
35
+ return seed
36
+
37
+ MAX_SEED = np.iinfo(np.int32).max
38
+
39
+ if not torch.cuda.is_available():
40
+ DESCRIPTION += "\n<p>⚠️Running on CPU, This may not work on CPU.</p>"
41
+
42
+ MAX_SEED = np.iinfo(np.int32).max
43
+
44
+ USE_TORCH_COMPILE = 0
45
+ ENABLE_CPU_OFFLOAD = 0
46
+
47
+ if torch.cuda.is_available():
48
+ pipe = StableDiffusionXLPipeline.from_pretrained(
49
+ "SG161222/RealVisXL_V4.0_Lightning",
50
+ torch_dtype=torch.float16,
51
+ use_safetensors=True,
52
+ )
53
+ pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
54
+ pipe.load_lora_weights("prithivMLmods/Canopus-Realism-LoRA", weight_name="Canopus-Realism-LoRA.safetensors", adapter_name="rlms")
55
+ pipe.set_adapters("rlms")
56
+ pipe.to("cuda")
57
+
58
+ @spaces.GPU(duration=60, enable_queue=True)
59
+ def generate(
60
+ prompt: str,
61
+ negative_prompt: str = "",
62
+ use_negative_prompt: bool = False,
63
+ seed: int = 0,
64
+ width: int = 1024,
65
+ height: int = 1024,
66
+ guidance_scale: float = 3,
67
+ randomize_seed: bool = False,
68
+ progress=gr.Progress(track_tqdm=True),
69
+ ):
70
+
71
+
72
+ seed = int(randomize_seed_fn(seed, randomize_seed))
73
+
74
+ if not use_negative_prompt:
75
+ negative_prompt = "" # type: ignore
76
+
77
+ images = pipe(
78
+ prompt=prompt,
79
+ negative_prompt=negative_prompt,
80
+ width=width,
81
+ height=height,
82
+ guidance_scale=guidance_scale,
83
+ num_inference_steps=10,
84
+ num_images_per_prompt=1,
85
+ cross_attention_kwargs={"scale": 0.65},
86
+ output_type="pil",
87
+ ).images
88
+ image_paths = [save_image(img) for img in images]
89
+ print(image_paths)
90
+ return image_paths, seed
91
+
92
+ examples = [
93
+ "A man dressed in sunglasses and brown jacket, in the style of cypherpunk, timeless beauty, exacting precision, uhd image, aleksandr deyneka, matte background, leather/hide --ar 67:101 --v 5",
94
+ "A studio portrait of a brunette model wearing a dress in front of a natural background --v 6.0 --style raw",
95
+ "Man in the style of dark beige and brown, uhd image, youthful protagonists, nonrepresentational"
96
+ ]
97
+
98
+ css = '''
99
+ .gradio-container{max-width: 545px !important}
100
+ h1{text-align:center}
101
+ footer {
102
+ visibility: hidden
103
+ }
104
+ '''
105
+
106
+
107
+ with gr.Blocks(css=css,theme="prithivMLmods/theme_brief") as demo:
108
+
109
+ with gr.Group():
110
+ with gr.Row():
111
+ prompt = gr.Text(
112
+ label="Prompt",
113
+ show_label=False,
114
+ max_lines=1,
115
+ placeholder="Enter your prompt",
116
+ container=False,
117
+ )
118
+ run_button = gr.Button("Run", scale=0)
119
+ result = gr.Gallery(label="Result", columns=1, preview=True, show_label=False)
120
+ with gr.Accordion("Advanced options", open=False):
121
+ use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
122
+ negative_prompt = gr.Text(
123
+ label="Negative prompt",
124
+ lines=4,
125
+ max_lines=6,
126
+ value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
127
+ placeholder="Enter a negative prompt",
128
+ visible=True,
129
+ )
130
+ seed = gr.Slider(
131
+ label="Seed",
132
+ minimum=0,
133
+ maximum=MAX_SEED,
134
+ step=1,
135
+ value=0,
136
+ visible=True
137
+ )
138
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
139
+ with gr.Row(visible=True):
140
+ width = gr.Slider(
141
+ label="Width",
142
+ minimum=512,
143
+ maximum=2048,
144
+ step=8,
145
+ value=1024,
146
+ )
147
+ height = gr.Slider(
148
+ label="Height",
149
+ minimum=512,
150
+ maximum=2048,
151
+ step=8,
152
+ value=1024,
153
+ )
154
+ with gr.Row():
155
+ guidance_scale = gr.Slider(
156
+ label="Guidance Scale",
157
+ minimum=0.1,
158
+ maximum=20.0,
159
+ step=0.1,
160
+ value=3.0,
161
+ )
162
+
163
+ gr.Examples(
164
+ examples=examples,
165
+ inputs=prompt,
166
+ outputs=[result, seed],
167
+ fn=generate,
168
+ cache_examples=True,
169
+ )
170
+
171
+ use_negative_prompt.change(
172
+ fn=lambda x: gr.update(visible=x),
173
+ inputs=use_negative_prompt,
174
+ outputs=negative_prompt,
175
+ api_name=False,
176
+ )
177
+
178
+
179
+ gr.on(
180
+ triggers=[
181
+ prompt.submit,
182
+ negative_prompt.submit,
183
+ run_button.click,
184
+ ],
185
+ fn=generate,
186
+ inputs=[
187
+ prompt,
188
+ negative_prompt,
189
+ use_negative_prompt,
190
+ seed,
191
+ width,
192
+ height,
193
+ guidance_scale,
194
+ randomize_seed,
195
+ ],
196
+ outputs=[result, seed],
197
+ api_name="run",
198
+ )
199
+
200
+ if __name__ == "__main__":
201
+ demo.queue(max_size=40).launch()