|
|
|
|
|
import gradio as gr |
|
from openai import OpenAI |
|
import os |
|
|
|
css = ''' |
|
.gradio-container{max-width: 870px !important} |
|
h1{text-align:center} |
|
footer { |
|
visibility: hidden |
|
} |
|
''' |
|
|
|
PASS = os.getenv("HF_TOKEN") |
|
|
|
client = OpenAI( |
|
base_url="https://api-inference.huggingface.co/v1/", |
|
api_key=PASS, |
|
) |
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
for val in history: |
|
if val[0]: |
|
messages.append({"role": "user", "content": val[0]}) |
|
if val[1]: |
|
messages.append({"role": "assistant", "content": val[1]}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
response = "" |
|
|
|
for message in client.chat.completions.create( |
|
model="mistralai/Mistral-Nemo-Instruct-2407", |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
messages=messages, |
|
): |
|
token = message.choices[0].delta.content |
|
|
|
response += token |
|
yield response |
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="", label="System message", visible=False), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens", visible=False), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature", visible=False), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-P", |
|
visible=False, |
|
), |
|
|
|
], |
|
css=css, |
|
theme="bethecloud/storj_theme", |
|
) |
|
if __name__ == "__main__": |
|
demo.launch() |