Spaces:
Sleeping
Sleeping
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
torch_dtype = torch.bfloat16 | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
model_name = "bigscience/bloomz-1b7" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto").to(device=device) | |
def run(text,**kargs): | |
inputs = tokenizer.encode(text=text, return_tensors="pt").to(device=device) | |
outputs = model.generate(inputs,**kargs) | |
return tokenizer.decode(outputs[0]) | |
if __name__ == "__main__": | |
print("model test") | |
model("This is the input text.") |