Spaces:
Runtime error
Runtime error
zhouxiangxin1998
commited on
Commit
•
c78ecd5
1
Parent(s):
79c3ea8
first commit
Browse files- README.md +1 -33
- app.py +84 -171
- data/antibody_design.csv +9 -0
- data/co_design.csv +6 -0
- data/conformation_prediction.csv +21 -0
- data/inverse_folding.csv +1 -1
- data/motif_scaffolding.csv +7 -0
- data/multi_state_prediction.csv +17 -0
- data/protein_folding.csv +6 -0
- data/sequence_design.csv +6 -0
- data/structure_design.csv +10 -0
- images/pb_logo.png +0 -0
- src/about.py +9 -71
- src/display/utils.py +0 -110
- src/envs.py +2 -14
- src/leaderboard/read_evals.py +0 -196
- src/populate.py +0 -58
- src/submission/check_validity.py +0 -99
- src/submission/submit.py +0 -119
README.md
CHANGED
@@ -9,36 +9,4 @@ pinned: true
|
|
9 |
license: cc-by-nc-4.0
|
10 |
---
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
Most of the variables to change for a default leaderboard are in `src/env.py` (replace the path for your leaderboard) and `src/about.py` (for tasks).
|
15 |
-
|
16 |
-
Results files should have the following format and be stored as json files:
|
17 |
-
```json
|
18 |
-
{
|
19 |
-
"config": {
|
20 |
-
"model_dtype": "torch.float16", # or torch.bfloat16 or 8bit or 4bit
|
21 |
-
"model_name": "path of the model on the hub: org/model",
|
22 |
-
"model_sha": "revision on the hub",
|
23 |
-
},
|
24 |
-
"results": {
|
25 |
-
"task_name": {
|
26 |
-
"metric_name": score,
|
27 |
-
},
|
28 |
-
"task_name2": {
|
29 |
-
"metric_name": score,
|
30 |
-
}
|
31 |
-
}
|
32 |
-
}
|
33 |
-
```
|
34 |
-
|
35 |
-
Request files are created automatically by this tool.
|
36 |
-
|
37 |
-
If you encounter problem on the space, don't hesitate to restart it to remove the create eval-queue, eval-queue-bk, eval-results and eval-results-bk created folder.
|
38 |
-
|
39 |
-
# Code logic for more complex edits
|
40 |
-
|
41 |
-
You'll find
|
42 |
-
- the main table' columns names and properties in `src/display/utils.py`
|
43 |
-
- the logic to read all results and request files, then convert them in dataframe lines, in `src/leaderboard/read_evals.py`, and `src/populate.py`
|
44 |
-
- the logic to allow or filter submissions in `src/submission/submit.py` and `src/submission/check_validity.py`
|
|
|
9 |
license: cc-by-nc-4.0
|
10 |
---
|
11 |
|
12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
@@ -1,201 +1,114 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
3 |
import pandas as pd
|
4 |
from apscheduler.schedulers.background import BackgroundScheduler
|
5 |
-
from huggingface_hub import snapshot_download
|
6 |
|
7 |
from src.about import (
|
8 |
CITATION_BUTTON_LABEL,
|
9 |
CITATION_BUTTON_TEXT,
|
10 |
-
EVALUATION_QUEUE_TEXT,
|
11 |
-
INTRODUCTION_TEXT,
|
12 |
-
LLM_BENCHMARKS_TEXT,
|
13 |
-
TITLE,
|
14 |
)
|
15 |
from src.display.css_html_js import custom_css
|
16 |
-
from src.display.utils import (
|
17 |
-
BENCHMARK_COLS,
|
18 |
-
COLS,
|
19 |
-
EVAL_COLS,
|
20 |
-
EVAL_TYPES,
|
21 |
-
AutoEvalColumn,
|
22 |
-
ModelType,
|
23 |
-
fields,
|
24 |
-
WeightType,
|
25 |
-
Precision
|
26 |
-
)
|
27 |
-
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
28 |
-
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
29 |
-
from src.submission.submit import add_new_eval
|
30 |
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
def restart_space():
|
33 |
API.restart_space(repo_id=REPO_ID)
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
pending_eval_queue_df,
|
60 |
-
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
61 |
-
|
62 |
-
def init_leaderboard(dataframe):
|
63 |
-
if dataframe is None or dataframe.empty:
|
64 |
-
raise ValueError("Leaderboard DataFrame is empty or None.")
|
65 |
-
return Leaderboard(
|
66 |
-
value=dataframe,
|
67 |
-
datatype=[c.type for c in fields(AutoEvalColumn)],
|
68 |
-
select_columns=SelectColumns(
|
69 |
-
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
|
70 |
-
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
|
71 |
-
label="Select Columns to Display:",
|
72 |
-
),
|
73 |
-
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
|
74 |
-
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
|
75 |
-
filter_columns=[
|
76 |
-
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
|
77 |
-
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
|
78 |
-
ColumnFilter(
|
79 |
-
AutoEvalColumn.params.name,
|
80 |
-
type="slider",
|
81 |
-
min=0.01,
|
82 |
-
max=150,
|
83 |
-
label="Select the number of parameters (B)",
|
84 |
-
),
|
85 |
-
ColumnFilter(
|
86 |
-
AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
|
87 |
-
),
|
88 |
-
],
|
89 |
-
bool_checkboxgroup_label="Hide models",
|
90 |
-
interactive=False,
|
91 |
-
)
|
92 |
-
|
93 |
|
94 |
demo = gr.Blocks(css=custom_css)
|
95 |
with demo:
|
96 |
-
gr.
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
100 |
-
with gr.TabItem("
|
101 |
-
leaderboard = init_leaderboard(LEADERBOARD_DF)
|
102 |
-
|
103 |
-
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
104 |
-
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
105 |
-
|
106 |
-
with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
107 |
-
with gr.Column():
|
108 |
-
with gr.Row():
|
109 |
-
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
110 |
-
|
111 |
-
with gr.Column():
|
112 |
-
with gr.Accordion(
|
113 |
-
f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
|
114 |
-
open=False,
|
115 |
-
):
|
116 |
-
with gr.Row():
|
117 |
-
finished_eval_table = gr.components.Dataframe(
|
118 |
-
value=finished_eval_queue_df,
|
119 |
-
headers=EVAL_COLS,
|
120 |
-
datatype=EVAL_TYPES,
|
121 |
-
row_count=5,
|
122 |
-
)
|
123 |
-
with gr.Accordion(
|
124 |
-
f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
|
125 |
-
open=False,
|
126 |
-
):
|
127 |
-
with gr.Row():
|
128 |
-
running_eval_table = gr.components.Dataframe(
|
129 |
-
value=running_eval_queue_df,
|
130 |
-
headers=EVAL_COLS,
|
131 |
-
datatype=EVAL_TYPES,
|
132 |
-
row_count=5,
|
133 |
-
)
|
134 |
-
|
135 |
-
with gr.Accordion(
|
136 |
-
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
137 |
-
open=False,
|
138 |
-
):
|
139 |
-
with gr.Row():
|
140 |
-
pending_eval_table = gr.components.Dataframe(
|
141 |
-
value=pending_eval_queue_df,
|
142 |
-
headers=EVAL_COLS,
|
143 |
-
datatype=EVAL_TYPES,
|
144 |
-
row_count=5,
|
145 |
-
)
|
146 |
with gr.Row():
|
147 |
-
gr.
|
148 |
-
|
|
|
|
|
149 |
with gr.Row():
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
|
178 |
-
submit_button = gr.Button("Submit Eval")
|
179 |
-
submission_result = gr.Markdown()
|
180 |
-
submit_button.click(
|
181 |
-
add_new_eval,
|
182 |
-
[
|
183 |
-
model_name_textbox,
|
184 |
-
base_model_name_textbox,
|
185 |
-
revision_name_textbox,
|
186 |
-
precision,
|
187 |
-
weight_type,
|
188 |
-
model_type,
|
189 |
-
],
|
190 |
-
submission_result,
|
191 |
-
)
|
192 |
|
193 |
with gr.Row():
|
194 |
-
with gr.Accordion("📙 Citation", open=
|
195 |
citation_button = gr.Textbox(
|
196 |
value=CITATION_BUTTON_TEXT,
|
197 |
label=CITATION_BUTTON_LABEL,
|
198 |
-
lines=
|
199 |
elem_id="citation-button",
|
200 |
show_copy_button=True,
|
201 |
)
|
|
|
1 |
+
import os
|
2 |
+
import base64
|
3 |
import gradio as gr
|
|
|
4 |
import pandas as pd
|
5 |
from apscheduler.schedulers.background import BackgroundScheduler
|
|
|
6 |
|
7 |
from src.about import (
|
8 |
CITATION_BUTTON_LABEL,
|
9 |
CITATION_BUTTON_TEXT,
|
|
|
|
|
|
|
|
|
10 |
)
|
11 |
from src.display.css_html_js import custom_css
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
from src.envs import API, REPO_ID
|
14 |
+
current_dir = os.path.dirname(os.path.realpath(__file__))
|
15 |
+
|
16 |
+
with open(os.path.join(current_dir, "images/pb_logo.png"), "rb") as image_file:
|
17 |
+
main_logo = base64.b64encode(image_file.read()).decode('utf-8')
|
18 |
|
19 |
def restart_space():
|
20 |
API.restart_space(repo_id=REPO_ID)
|
21 |
|
22 |
+
TITLE="""
|
23 |
+
# ProteinBench: A Holistic Evaluation of Protein Foundation Models"""
|
24 |
+
|
25 |
+
INTRO_TEXT="""
|
26 |
+
Recent years have witnessed a surge in the development of protein foundation models,
|
27 |
+
significantly improving performance in protein prediction and generative tasks
|
28 |
+
ranging from 3D structure prediction and protein design to conformational dynamics.
|
29 |
+
However, the capabilities and limitations associated with these models remain poorly understood due to the absence of a unified evaluation framework.
|
30 |
+
To fill this gap, we introduce <b>ProteinBench</b>,
|
31 |
+
a holistic evaluation framework designed to enhance the transparency of protein foundation models.
|
32 |
+
Our approach consists of three key components:
|
33 |
+
(i) A taxonomic classification of tasks that broadly encompass the main challenges in the protein domain,
|
34 |
+
based on the relationships between different protein modalities;
|
35 |
+
(ii) A multi-metric evaluation approach that assesses performance across four key dimensions: quality, novelty, diversity, and robustness;
|
36 |
+
and (iii) In-depth analyses from various user objectives, providing a holistic view of model performance.
|
37 |
+
Our comprehensive evaluation of protein foundation models reveals several key findings that shed light on their current capabilities and limitations.
|
38 |
+
To promote transparency and facilitate further research, we release the evaluation dataset, code, and a public leaderboard publicly for further analysis
|
39 |
+
and a general modular toolkit. We intend for ProteinBench to be a living benchmark for establishing a standardized,
|
40 |
+
in-depth evaluation framework for protein foundation models, driving their development and application while fostering collaboration within the field.
|
41 |
+
|
42 |
+
## [Paper](https://www.arxiv.org/pdf/2409.06744) | [Website](https://proteinbench.github.io/)
|
43 |
+
"""
|
44 |
+
|
45 |
+
# ### Space initialisation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
demo = gr.Blocks(css=custom_css)
|
48 |
with demo:
|
49 |
+
with gr.Row():
|
50 |
+
with gr.Column(scale=6):
|
51 |
+
gr.Markdown(TITLE)
|
52 |
+
with gr.Row():
|
53 |
+
with gr.Column(scale=6):
|
54 |
+
gr.Markdown(INTRO_TEXT)
|
55 |
+
with gr.Column(scale=1):
|
56 |
+
gr.HTML(f'<img src="data:image/jpeg;base64,{main_logo}" style="width:16em;vertical-align: middle"/>')
|
57 |
|
58 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
59 |
+
with gr.TabItem("🏆 Inverse Folding Leaderboard"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
with gr.Row():
|
61 |
+
inverse_folding_table = gr.DataFrame(
|
62 |
+
pd.read_csv('data/inverse_folding.csv')
|
63 |
+
)
|
64 |
+
with gr.TabItem("🏆 Structre Design Leaderboard"):
|
65 |
with gr.Row():
|
66 |
+
inverse_folding_table = gr.DataFrame(
|
67 |
+
pd.read_csv('data/structure_design.csv')
|
68 |
+
)
|
69 |
+
with gr.TabItem("🏆 Sequence Design Leaderboard"):
|
70 |
+
with gr.Row():
|
71 |
+
inverse_folding_table = gr.DataFrame(
|
72 |
+
pd.read_csv('data/sequence_design.csv')
|
73 |
+
)
|
74 |
+
with gr.TabItem("🏆 Sequence-Structure Co-Design Leaderboard"):
|
75 |
+
with gr.Row():
|
76 |
+
inverse_folding_table = gr.DataFrame(
|
77 |
+
pd.read_csv('data/co_design.csv')
|
78 |
+
)
|
79 |
+
with gr.TabItem("🏆 Motif Scaffolding Leaderboard"):
|
80 |
+
with gr.Row():
|
81 |
+
inverse_folding_table = gr.DataFrame(
|
82 |
+
pd.read_csv('data/motif_scaffolding.csv')
|
83 |
+
)
|
84 |
+
with gr.TabItem("🏆 Antibody Design Leaderboard"):
|
85 |
+
with gr.Row():
|
86 |
+
inverse_folding_table = gr.DataFrame(
|
87 |
+
pd.read_csv('data/antibody_design.csv')
|
88 |
+
)
|
89 |
+
with gr.TabItem("🏅 Protein Folding Leaderboard"):
|
90 |
+
with gr.Row():
|
91 |
+
inverse_folding_table = gr.DataFrame(
|
92 |
+
pd.read_csv('data/protein_folding.csv')
|
93 |
+
)
|
94 |
+
with gr.TabItem("🏅 Multi-State Prediction Leaderboard"):
|
95 |
+
with gr.Row():
|
96 |
+
inverse_folding_table = gr.DataFrame(
|
97 |
+
pd.read_csv('data/multi_state_prediction.csv')
|
98 |
+
)
|
99 |
+
with gr.TabItem("🏅 Conformation Prediction Leaderboard"):
|
100 |
+
with gr.Row():
|
101 |
+
inverse_folding_table = gr.DataFrame(
|
102 |
+
pd.read_csv('data/conformation_prediction.csv')
|
103 |
+
)
|
104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
with gr.Row():
|
107 |
+
with gr.Accordion("📙 Citation", open=True):
|
108 |
citation_button = gr.Textbox(
|
109 |
value=CITATION_BUTTON_TEXT,
|
110 |
label=CITATION_BUTTON_LABEL,
|
111 |
+
lines=9,
|
112 |
elem_id="citation-button",
|
113 |
show_copy_button=True,
|
114 |
)
|
data/antibody_design.csv
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Model,AAR ↑,RMSD ↓,TM-score ↑,Binding Energy ↓,SeqSim-outer ↓,SeqSim-inner ↑,PHR ↓,CN-score ↑,Clashes-inner ↓,Clashes-outer ↓,SeqNat ↑,Total Energy ↓,scRMSD ↓
|
2 |
+
RAbD (natural),100.00%,0.00,1.00,-15.33,0.26,N/A,45.78%,50.19,0.07,0.00,-1.74,-16.76,1.77
|
3 |
+
HERN,33.17%,9.86,0.16,1242.77,0.41,N/A,39.83%,0.04,0.04,3.25,-1.47,5408.74,9.89
|
4 |
+
MEAN,33.47%,1.82,0.25,263.90,0.65,N/A,40.74%,1.33,11.65,0.29,-1.83,1077.32,2.77
|
5 |
+
dyMEAN,40.95%,2.36,0.36,889.28,0.58,N/A,42.04%,1.49,9.15,0.47,-1.79,1642.65,2.11
|
6 |
+
*dyMEAN-FixFR,40.05%,2.37,0.35,612.75,0.60,0.96,43.75%,1.14,8.88,0.48,-1.82,1239.29,2.48
|
7 |
+
*DiffAb,35.04%,2.53,0.37,489.42,0.37,0.45,40.68%,2.02,1.84,0.19,-1.88,495.69,2.57
|
8 |
+
*AbDPO,31.29%,2.79,0.35,116.06,0.38,0.60,69.69%,1.33,4.14,0.10,-1.99,270.12,2.79
|
9 |
+
*AbDPO++,36.25%,2.48,0.35,223.73,0.39,0.54,44.51%,2.34,1.66,0.08,-1.78,338.14,2.50
|
data/co_design.csv
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Model,scTM (L=100) ↑,scRMSD (L=100) ↓,Max Clust. (L=100) ↑,Max TM (L=100) ↓,scTM (L=200) ↑,scRMSD (L=200) ↓,Max Clust. (L=200) ↑,Max TM (L=200) ↓,scTM (L=300) ↑,scRMSD (L=300) ↓,Max Clust. (L=300) ↑,Max TM (L=300) ↓,scTM (L=500) ↑,scRMSD (L=500) ↓,Max Clust. (L=500) ↑,Max TM (L=500) ↓
|
2 |
+
Native PDBs,0.91,2.98,0.75,N/A,0.88,3.24,0.77,N/A,0.92,3.94,0.75,N/A,0.90,9.64,0.80,N/A
|
3 |
+
ProteinGenerator,0.91,3.75,0.24,0.73,0.88,6.24,0.25,0.72,0.81,9.26,0.22,0.71,0.69,17.00,0.18,0.73
|
4 |
+
ProtPardelle*,0.56,12.90,0.57,0.66,0.64,13.67,0.10,0.69,0.69,14.91,0.04,0.72,0.44,43.15,0.60,0.69
|
5 |
+
Multiflow,0.96,1.10,0.33,0.71,0.95,1.61,0.42,0.71,0.96,2.14,0.58,0.71,0.95,2.71,0.62,0.71
|
6 |
+
ESM3*,0.72,13.80,0.64,0.41,0.63,21.18,0.63,0.61,0.59,25.50,0.52,0.73,0.64,26.72,0.46,0.78
|
data/conformation_prediction.csv
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Model,Pairwise RMSD,*RMSF,Pearson r on Pairwise RMSD ↑,Pearson r on *Global RMSF ↑,Pearson r on *Per target RMSF ↑,*RMWD ↓,MD PCA W2 ↓,Joint PCA W2 ↓,PC sim > 0.5% ↑,Weak contacts J ↑,Transient contacts J ↑,*Exposed residue J ↑,*Exposed MI matrix ρ ↑,CA break % ↓,CA clash % ↓,PepBond break % ↓
|
2 |
+
MD iid,2.76,1.63,0.96,0.97,0.99,0.71,0.76,0.70,93.9,0.90,0.80,0.93,0.56,0.0,0.1,3.4
|
3 |
+
MD 2.5 ns,1.54,0.98,0.89,0.85,0.85,2.21,1.57,1.93,36.6,0.62,0.45,0.64,0.24,0.0,0.1,3.4
|
4 |
+
EigenFold,5.96,N/A,-0.04,N/A,N/A,N/A,2.35,7.96,12.2,0.36,0.18,N/A,N/A,0.7,9.6,N/A
|
5 |
+
MSA-depth256,0.84,0.53,0.25,0.34,0.59,3.63,1.83,2.90,29.3,0.30,0.28,0.33,0.06,0.0,0.2,5.9
|
6 |
+
MSA-depth64,2.03,1.51,0.24,0.30,0.57,4.00,1.87,3.32,18.3,0.38,0.27,0.38,0.12,0.0,0.2,8.4
|
7 |
+
MSA-depth32,5.71,7.96,0.07,0.17,0.53,6.12,2.50,5.67,17.1,0.39,0.24,0.36,0.15,0.0,0.5,13.0
|
8 |
+
Str2Str-ODE (t=0.1),1.66,N/A,0.13,N/A,N/A,N/A,2.12,4.42,6.1,0.42,0.17,N/A,N/A,0.0,0.1,13.7
|
9 |
+
Str2Str-ODE (t=0.3),3.15,N/A,0.12,N/A,N/A,N/A,2.23,4.75,9.8,0.41,0.17,N/A,N/A,0.0,0.1,14.8
|
10 |
+
Str2Str-SDE (t=0.1),4.74,N/A,0.10,N/A,N/A,N/A,2.54,8.84,9.8,0.40,0.13,N/A,N/A,1.6,0.2,23.0
|
11 |
+
Str2Str-SDE (t=0.3),7.54,N/A,0.00,N/A,N/A,N/A,3.29,12.28,7.3,0.35,0.13,N/A,N/A,1.5,0.2,21.4
|
12 |
+
AlphaFlow-PDB,2.58,1.20,0.27,0.46,0.81,2.96,1.66,2.60,37.8,0.44,0.33,0.42,0.18,0.0,0.2,6.6
|
13 |
+
AlphaFlow-MD,2.88,1.63,0.53,0.66,0.85,2.68,1.53,2.28,39.0,0.57,0.38,0.50,0.24,0.0,0.2,21.7
|
14 |
+
ESMFlow-PDB,3.00,1.68,0.14,0.27,0.71,4.20,1.77,3.54,28.0,0.42,0.29,0.41,0.16,0.0,0.6,5.4
|
15 |
+
ESMFlow-MD,3.34,2.13,0.19,0.30,0.76,3.63,1.54,3.15,25.6,0.51,0.33,0.47,0.21,0.0,0.3,10.9
|
16 |
+
ConfDiff-Open-ClsFree,3.68,2.12,0.40,0.54,0.83,2.92,1.50,2.54,46.3,0.54,0.33,0.47,0.21,0.0,1.2,5.7
|
17 |
+
ConfDiff-Open-PDB,2.90,1.43,0.38,0.51,0.82,2.97,1.57,2.51,34.1,0.47,0.34,0.43,0.18,0.0,0.9,5.7
|
18 |
+
ConfDiff-Open-MD,3.43,2.21,0.59,0.67,0.85,2.76,1.44,2.25,35.4,0.59,0.36,0.50,0.24,0.0,0.8,6.3
|
19 |
+
ConfDiff-ESM-ClsFree,4.04,2.84,0.31,0.43,0.82,3.82,1.72,3.06,37.8,0.54,0.31,0.47,0.18,0.0,1.8,4.3
|
20 |
+
ConfDiff-ESM-PDB,3.42,2.06,0.29,0.40,0.80,3.67,1.70,3.17,34.1,0.48,0.31,0.42,0.18,0.0,1.6,3.9
|
21 |
+
ConfDiff-ESM-MD,3.91,2.79,0.35,0.48,0.82,3.67,1.66,2.89,39.0,0.56,0.34,0.48,0.23,0.0,1.5,4.0
|
data/inverse_folding.csv
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
Model,CASP AAR ↑,CAMEO AAR ↑,
|
2 |
ProteinMPNN,0.450,0.468,0.962,94.14,0.945,89.34,0.962,90.28,0.875,83.76,0.568,67.09
|
3 |
ESM-IF1,N/A,N/A,0.810,88.83,0.635,69.67,0.336,74.36,0.449,64.59,0.462,58.97
|
4 |
LM-Design,0.516,0.570,0.834,78.45,0.373,58.41,0.481,69.86,0.565,59.87,0.397,56.35
|
|
|
1 |
+
Model,CASP AAR ↑,CAMEO AAR ↑,scTM (L=100) ↑,pLDDT (L=100) ↑,scTM (L=200) ↑,pLDDT (L=200) ↑,scTM (L=300) ↑,pLDDT (L=300) ↑,scTM (L=400) ↑,pLDDT (L=400) ↑,scTM (L=500) ↑,pLDDT (L=500) ↑
|
2 |
ProteinMPNN,0.450,0.468,0.962,94.14,0.945,89.34,0.962,90.28,0.875,83.76,0.568,67.09
|
3 |
ESM-IF1,N/A,N/A,0.810,88.83,0.635,69.67,0.336,74.36,0.449,64.59,0.462,58.97
|
4 |
LM-Design,0.516,0.570,0.834,78.45,0.373,58.41,0.481,69.86,0.565,59.87,0.397,56.35
|
data/motif_scaffolding.csv
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Model,1QJG,2KL8,4JHW,4ZYP,5IUS,5TPN,5TRV,5WN9,6EXZ,7MRX,3IXT,1BCF,1PRW,1YCR,5YUI,6E6R
|
2 |
+
FrameFlow,15,100,10,30,80,60,25,5,55,17,20,70,10,10,5,46
|
3 |
+
RFdiffusion,17,90,13,40,65,50,37,4,57,16,30,80,12,20,8,63
|
4 |
+
TDS,25,60,15,20,85,35,34,9,42,22,25,30,15,15,20,25
|
5 |
+
EvoDiff,0,0,0,0,0,0,0,0,0,0,9,38,36,3,5,3
|
6 |
+
DPLM,0,1,0,1,0,0,0,0,1,0,37,100,81,48,94,79
|
7 |
+
ESM3,19,5,0,1,2,7,13,0,56,50,28,100,91,77,89,54
|
data/multi_state_prediction.csv
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Model,RMSDens N=10,RMSDens N=100,RMSDens N=500,RMSDens N=1000,RMSD Cluster 3 N=10,RMSD Cluster 3 N=100,RMSD Cluster 3 N=500,RMSD Cluster 3 N=1000,Pairwise RMSD,CA clash (%),CA break (%),PepBond break (%)
|
2 |
+
EigenFold,1.56,1.50,1.47,1.46,2.54,2.48,2.46,2.46,0.85,1.4,4.3,N/A
|
3 |
+
MSA-depth256,1.57,1.54,1.52,1.52,2.51,2.47,2.45,2.45,0.20,0.0,0.0,9.2
|
4 |
+
MSA-depth64,1.60,1.54,1.51,1.50,2.48,2.40,2.35,2.33,0.55,0.0,0.0,7.9
|
5 |
+
MSA-depth32,1.67,1.53,1.45,1.41,2.39,2.21,1.93,1.87,2.14,0.6,0.0,10.6
|
6 |
+
Str2Str-ODE (Tmax=0.15),2.36,2.19,2.10,2.08,3.03,2.68,2.60,2.56,1.86,0.0,0.0,13.9
|
7 |
+
Str2Str-SDE (Tmax=0.15),2.83,2.48,2.28,2.25,3.42,2.92,2.52,2.48,3.60,0.3,0.0,16.0
|
8 |
+
AlphaFlow-PDB,1.53,1.45,1.42,1.41,2.48,2.43,2.41,2.40,0.86,0.0,0.0,13.2
|
9 |
+
AlphaFlow-MD,1.74,1.51,1.45,1.43,2.44,2.32,2.28,2.24,1.26,0.0,0.1,26.2
|
10 |
+
ESMFlow-PDB,1.61,1.49,1.44,1.42,2.47,2.41,2.37,2.35,0.74,0.0,0.0,6.0
|
11 |
+
ESMFlow-MD,1.66,1.50,1.41,1.40,2.49,2.29,2.20,2.18,1.17,0.0,0.0,14.3
|
12 |
+
ConfDiff-Open-ClsFree,1.65,1.48,1.41,1.37,2.56,2.30,2.16,2.03,1.77,0.5,0.0,5.5
|
13 |
+
ConfDiff-Open-MD,1.64,1.50,1.44,1.42,2.49,2.39,2.32,2.31,1.37,0.2,0.0,4.6
|
14 |
+
ConfDiff-ESM-ClsFree,1.58,1.45,1.41,1.39,2.50,2.39,2.35,2.33,1.52,0.5,0.0,7.5
|
15 |
+
ConfDiff-ESM-MD,1.61,1.47,1.42,1.40,2.45,2.32,2.26,2.24,1.42,0.1,0.0,5.0
|
16 |
+
ConfDiff-ESM-Energy,1.63,1.47,1.43,1.42,2.55,2.43,2.41,2.40,1.26,0.1,0.0,7.5
|
17 |
+
ConfDiff-ESM-Force,1.58,1.44,1.37,1.36,2.45,2.33,2.23,2.22,1.76,0.1,0.0,8.9
|
data/protein_folding.csv
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Model,TM-score ↑,RMSD ↓,GDT-TS ↑,IDDT ↑,CA clash (%) ↓,CA break (%) ↓,PepBond break (%) ↓
|
2 |
+
AlphaFold2,0.871,3.21,0.860,0.900,0.3,0.0,4.8
|
3 |
+
OpenFold,0.870,3.21,0.856,0.895,0.4,0.0,2.0
|
4 |
+
RoseTTAFold2,0.859,3.52,0.845,0.888,0.3,0.2,5.5
|
5 |
+
ESMFold,0.847,3.98,0.826,0.870,0.3,0.0,4.7
|
6 |
+
EigenFold*,0.743,7.65,0.703,0.737,8.0,0.5,N/A
|
data/sequence_design.csv
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Model,ppl (L=100) ↓,pLDDT (L=100) ↑,pairwise TM (L=100) ↓,Max Clust. (L=100) ↑,Max TM (L=100) ↓,ppl (L=200) ↓,pLDDT (L=200) ↑,pairwise TM (L=200) ↓,Max Clust. (L=200) ↑,Max TM (L=200) ↓,ppl (L=300) ↓,pLDDT (L=300) ↑,pairwise TM (L=300) ↓,Max Clust. (L=300) ↑,Max TM (L=300) ↓,ppl (L=500) ↓,pLDDT (L=500) ↑,pairwise TM (L=500) ↓,Max Clust. (L=500) ↑,Max TM (L=500) ↓
|
2 |
+
Native Seqs,N/A,68.46,0.55,0.75,N/A,N/A,61.91,0.49,0.78,N/A,N/A,61.49,0.51,0.85,N/A,N/A,62.95,0.51,0.78,N/A
|
3 |
+
Progen 2 (700M),8.28,64.00,0.42,0.94,0.64,5.68,69.91,0.40,0.91,0.69,6.25,65.69,0.42,0.93,0.66,4.27,61.45,0.32,0.95,0.68
|
4 |
+
EvoDiff,16.89,50.20,0.43,0.98,0.69,17.28,50.66,0.36,1.00,0.71,17.13,45.14,0.31,1.00,0.68,16.51,43.14,0.31,1.00,0.69
|
5 |
+
DPLM (650M),6.21,85.38,0.50,0.80,0.74,4.61,93.54,0.54,0.70,0.91,3.47,93.07,0.57,0.63,0.91,3.33,87.73,0.43,0.85,0.85
|
6 |
+
ESM3 (1.4B),14.79,54.26,0.45,0.90,0.68,12.96,58.45,0.35,1.00,0.80,14.59,48.08,0.32,1.00,0.75,11.10,52.17,0.30,1.00,0.54
|
data/structure_design.csv
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Model,scTM (L=50) ↑,scRMSD (L=50) ↓,Max TM (L=50) ↓,pairwise TM (L=50) ↓,Max Clust. (L=50) ↑,scTM (L=100) ↑,scRMSD (L=100) ↓,Max TM (L=100) ↓,pairwise TM (L=100) ↓,Max Clust. (L=100) ↑,scTM (L=300) ↑,scRMSD (L=300) ↓,Max TM (L=300) ↓,pairwise TM (L=300) ↓,Max Clust. (L=300) ↑,scTM (L=500) ↑,scRMSD (L=500) ↓,Max TM (L=500) ↓,pairwise TM (L=500) ↓,Max Clust. (L=500) ↑
|
2 |
+
Native PDBs,0.91,0.74,N/A,0.29,0.66,0.96,0.67,N/A,0.30,0.77,0.97,0.82,N/A,0.28,0.77,0.97,1.07,N/A,0.29,0.80
|
3 |
+
RFdiffusion,0.95,0.45,0.65,0.58,0.67,0.98,0.48,0.76,0.41,0.32,0.96,1.03,0.64,0.36,0.65,0.79,5.60,0.62,0.33,0.89
|
4 |
+
FrameFlow,0.91,0.58,0.75,0.68,0.39,0.94,0.70,0.72,0.55,0.49,0.92,1.95,0.65,0.43,0.88,0.61,7.92,0.61,0.40,0.92
|
5 |
+
Chroma,0.85,1.05,0.59,0.29,0.48,0.89,1.27,0.70,0.35,0.59,0.87,2.47,0.66,0.36,0.67,0.72,6.71,0.60,0.29,0.99
|
6 |
+
FrameDiff(latest),0.85,1.00,0.67,0.35,0.64,0.90,1.23,0.71,0.52,0.11,0.87,2.73,0.69,0.48,0.21,0.63,9.52,0.58,0.40,0.52
|
7 |
+
FoldFlow1(sfm),0.90,0.67,0.68,0.63,0.48,0.87,1.34,0.65,0.49,0.83,0.45,9.04,0.54,0.39,1.00,0.37,13.04,0.53,0.37,1.00
|
8 |
+
FoldFlow1(base),0.79,1.19,0.66,0.53,0.76,0.81,1.70,0.62,0.48,0.83,0.43,9.56,0.54,0.39,0.98,0.35,13.20,0.52,0.39,1.00
|
9 |
+
FoldFlow1(ot),0.83,1.10,0.65,0.53,0.77,0.83,1.60,0.64,0.48,0.81,0.54,8.21,0.58,0.41,0.94,0.37,12.48,0.51,0.35,1.00
|
10 |
+
Genie,0.57,3.12,0.57,0.32,0.90,0.69,3.38,0.59,0.31,0.96,0.27,20.37,0.30,0.23,1.00,0.25,26.08,0.22,0.23,1.00
|
images/pb_logo.png
ADDED
src/about.py
CHANGED
@@ -1,72 +1,10 @@
|
|
1 |
-
from dataclasses import dataclass
|
2 |
-
from enum import Enum
|
3 |
-
|
4 |
-
@dataclass
|
5 |
-
class Task:
|
6 |
-
benchmark: str
|
7 |
-
metric: str
|
8 |
-
col_name: str
|
9 |
-
|
10 |
-
|
11 |
-
# Select your tasks here
|
12 |
-
# ---------------------------------------------------
|
13 |
-
class Tasks(Enum):
|
14 |
-
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
15 |
-
task0 = Task("anli_r1", "acc", "ANLI")
|
16 |
-
task1 = Task("logiqa", "acc_norm", "LogiQA")
|
17 |
-
|
18 |
-
NUM_FEWSHOT = 0 # Change with your few shot
|
19 |
-
# ---------------------------------------------------
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
# Your leaderboard name
|
24 |
-
TITLE = """<h1 align="center" id="space-title">ProteinBench</h1>"""
|
25 |
-
|
26 |
-
# What does your leaderboard evaluate?
|
27 |
-
INTRODUCTION_TEXT = """
|
28 |
-
Intro text
|
29 |
-
"""
|
30 |
-
|
31 |
-
# Which evaluations are you running? how can people reproduce what you have?
|
32 |
-
LLM_BENCHMARKS_TEXT = f"""
|
33 |
-
## How it works
|
34 |
-
|
35 |
-
## Reproducibility
|
36 |
-
To reproduce our results, here is the commands you can run:
|
37 |
-
|
38 |
-
"""
|
39 |
-
|
40 |
-
EVALUATION_QUEUE_TEXT = """
|
41 |
-
## Some good practices before submitting a model
|
42 |
-
|
43 |
-
### 1) Make sure you can load your model and tokenizer using AutoClasses:
|
44 |
-
```python
|
45 |
-
from transformers import AutoConfig, AutoModel, AutoTokenizer
|
46 |
-
config = AutoConfig.from_pretrained("your model name", revision=revision)
|
47 |
-
model = AutoModel.from_pretrained("your model name", revision=revision)
|
48 |
-
tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision)
|
49 |
-
```
|
50 |
-
If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded.
|
51 |
-
|
52 |
-
Note: make sure your model is public!
|
53 |
-
Note: if your model needs `use_remote_code=True`, we do not support this option yet but we are working on adding it, stay posted!
|
54 |
-
|
55 |
-
### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index)
|
56 |
-
It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number of parameters of your model to the `Extended Viewer`!
|
57 |
-
|
58 |
-
### 3) Make sure your model has an open license!
|
59 |
-
This is a leaderboard for Open LLMs, and we'd love for as many people as possible to know they can use your model 🤗
|
60 |
-
|
61 |
-
### 4) Fill up your model card
|
62 |
-
When we add extra information about models to the leaderboard, it will be automatically taken from the model card
|
63 |
-
|
64 |
-
## In case of model failure
|
65 |
-
If your model is displayed in the `FAILED` category, its execution stopped.
|
66 |
-
Make sure you have followed the above steps first.
|
67 |
-
If everything is done, check you can launch the EleutherAIHarness on your model locally, using the above command without modifications (you can add `--limit` to limit the number of examples per task).
|
68 |
-
"""
|
69 |
-
|
70 |
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
71 |
-
CITATION_BUTTON_TEXT = r"""
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
2 |
+
CITATION_BUTTON_TEXT = r"""@misc{ye2024proteinbenchholisticevaluationprotein,
|
3 |
+
title={ProteinBench: A Holistic Evaluation of Protein Foundation Models},
|
4 |
+
author={Fei Ye and Zaixiang Zheng and Dongyu Xue and Yuning Shen and Lihao Wang and Yiming Ma and Yan Wang and Xinyou Wang and Xiangxin Zhou and Quanquan Gu},
|
5 |
+
year={2024},
|
6 |
+
eprint={2409.06744},
|
7 |
+
archivePrefix={arXiv},
|
8 |
+
primaryClass={q-bio.QM},
|
9 |
+
url={https://arxiv.org/abs/2409.06744},
|
10 |
+
}"""
|
src/display/utils.py
DELETED
@@ -1,110 +0,0 @@
|
|
1 |
-
from dataclasses import dataclass, make_dataclass
|
2 |
-
from enum import Enum
|
3 |
-
|
4 |
-
import pandas as pd
|
5 |
-
|
6 |
-
from src.about import Tasks
|
7 |
-
|
8 |
-
def fields(raw_class):
|
9 |
-
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
|
10 |
-
|
11 |
-
|
12 |
-
# These classes are for user facing column names,
|
13 |
-
# to avoid having to change them all around the code
|
14 |
-
# when a modif is needed
|
15 |
-
@dataclass
|
16 |
-
class ColumnContent:
|
17 |
-
name: str
|
18 |
-
type: str
|
19 |
-
displayed_by_default: bool
|
20 |
-
hidden: bool = False
|
21 |
-
never_hidden: bool = False
|
22 |
-
|
23 |
-
## Leaderboard columns
|
24 |
-
auto_eval_column_dict = []
|
25 |
-
# Init
|
26 |
-
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
27 |
-
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
28 |
-
#Scores
|
29 |
-
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
|
30 |
-
for task in Tasks:
|
31 |
-
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
32 |
-
# Model information
|
33 |
-
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
|
34 |
-
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
|
35 |
-
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
|
36 |
-
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
37 |
-
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
38 |
-
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
|
39 |
-
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
|
40 |
-
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
|
41 |
-
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
42 |
-
|
43 |
-
# We use make dataclass to dynamically fill the scores from Tasks
|
44 |
-
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
45 |
-
|
46 |
-
## For the queue columns in the submission tab
|
47 |
-
@dataclass(frozen=True)
|
48 |
-
class EvalQueueColumn: # Queue column
|
49 |
-
model = ColumnContent("model", "markdown", True)
|
50 |
-
revision = ColumnContent("revision", "str", True)
|
51 |
-
private = ColumnContent("private", "bool", True)
|
52 |
-
precision = ColumnContent("precision", "str", True)
|
53 |
-
weight_type = ColumnContent("weight_type", "str", "Original")
|
54 |
-
status = ColumnContent("status", "str", True)
|
55 |
-
|
56 |
-
## All the model information that we might need
|
57 |
-
@dataclass
|
58 |
-
class ModelDetails:
|
59 |
-
name: str
|
60 |
-
display_name: str = ""
|
61 |
-
symbol: str = "" # emoji
|
62 |
-
|
63 |
-
|
64 |
-
class ModelType(Enum):
|
65 |
-
PT = ModelDetails(name="pretrained", symbol="🟢")
|
66 |
-
FT = ModelDetails(name="fine-tuned", symbol="🔶")
|
67 |
-
IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
|
68 |
-
RL = ModelDetails(name="RL-tuned", symbol="🟦")
|
69 |
-
Unknown = ModelDetails(name="", symbol="?")
|
70 |
-
|
71 |
-
def to_str(self, separator=" "):
|
72 |
-
return f"{self.value.symbol}{separator}{self.value.name}"
|
73 |
-
|
74 |
-
@staticmethod
|
75 |
-
def from_str(type):
|
76 |
-
if "fine-tuned" in type or "🔶" in type:
|
77 |
-
return ModelType.FT
|
78 |
-
if "pretrained" in type or "🟢" in type:
|
79 |
-
return ModelType.PT
|
80 |
-
if "RL-tuned" in type or "🟦" in type:
|
81 |
-
return ModelType.RL
|
82 |
-
if "instruction-tuned" in type or "⭕" in type:
|
83 |
-
return ModelType.IFT
|
84 |
-
return ModelType.Unknown
|
85 |
-
|
86 |
-
class WeightType(Enum):
|
87 |
-
Adapter = ModelDetails("Adapter")
|
88 |
-
Original = ModelDetails("Original")
|
89 |
-
Delta = ModelDetails("Delta")
|
90 |
-
|
91 |
-
class Precision(Enum):
|
92 |
-
float16 = ModelDetails("float16")
|
93 |
-
bfloat16 = ModelDetails("bfloat16")
|
94 |
-
Unknown = ModelDetails("?")
|
95 |
-
|
96 |
-
def from_str(precision):
|
97 |
-
if precision in ["torch.float16", "float16"]:
|
98 |
-
return Precision.float16
|
99 |
-
if precision in ["torch.bfloat16", "bfloat16"]:
|
100 |
-
return Precision.bfloat16
|
101 |
-
return Precision.Unknown
|
102 |
-
|
103 |
-
# Column selection
|
104 |
-
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
105 |
-
|
106 |
-
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
|
107 |
-
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
|
108 |
-
|
109 |
-
BENCHMARK_COLS = [t.value.col_name for t in Tasks]
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/envs.py
CHANGED
@@ -2,24 +2,12 @@ import os
|
|
2 |
|
3 |
from huggingface_hub import HfApi
|
4 |
|
5 |
-
|
6 |
-
# ----------------------------------
|
7 |
-
TOKEN = os.environ.get("HF_TOKEN") # A read/write token for your org
|
8 |
|
9 |
-
OWNER = "
|
10 |
-
# ----------------------------------
|
11 |
|
12 |
REPO_ID = f"{OWNER}/leaderboard"
|
13 |
QUEUE_REPO = f"{OWNER}/requests"
|
14 |
RESULTS_REPO = f"{OWNER}/results"
|
15 |
|
16 |
-
# If you setup a cache later, just change HF_HOME
|
17 |
-
CACHE_PATH=os.getenv("HF_HOME", ".")
|
18 |
-
|
19 |
-
# Local caches
|
20 |
-
EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
|
21 |
-
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
|
22 |
-
EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
|
23 |
-
EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
|
24 |
-
|
25 |
API = HfApi(token=TOKEN)
|
|
|
2 |
|
3 |
from huggingface_hub import HfApi
|
4 |
|
5 |
+
TOKEN = os.environ.get("HF_TOKEN")
|
|
|
|
|
6 |
|
7 |
+
OWNER = "proteinbench"
|
|
|
8 |
|
9 |
REPO_ID = f"{OWNER}/leaderboard"
|
10 |
QUEUE_REPO = f"{OWNER}/requests"
|
11 |
RESULTS_REPO = f"{OWNER}/results"
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
API = HfApi(token=TOKEN)
|
src/leaderboard/read_evals.py
DELETED
@@ -1,196 +0,0 @@
|
|
1 |
-
import glob
|
2 |
-
import json
|
3 |
-
import math
|
4 |
-
import os
|
5 |
-
from dataclasses import dataclass
|
6 |
-
|
7 |
-
import dateutil
|
8 |
-
import numpy as np
|
9 |
-
|
10 |
-
from src.display.formatting import make_clickable_model
|
11 |
-
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
|
12 |
-
from src.submission.check_validity import is_model_on_hub
|
13 |
-
|
14 |
-
|
15 |
-
@dataclass
|
16 |
-
class EvalResult:
|
17 |
-
"""Represents one full evaluation. Built from a combination of the result and request file for a given run.
|
18 |
-
"""
|
19 |
-
eval_name: str # org_model_precision (uid)
|
20 |
-
full_model: str # org/model (path on hub)
|
21 |
-
org: str
|
22 |
-
model: str
|
23 |
-
revision: str # commit hash, "" if main
|
24 |
-
results: dict
|
25 |
-
precision: Precision = Precision.Unknown
|
26 |
-
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
|
27 |
-
weight_type: WeightType = WeightType.Original # Original or Adapter
|
28 |
-
architecture: str = "Unknown"
|
29 |
-
license: str = "?"
|
30 |
-
likes: int = 0
|
31 |
-
num_params: int = 0
|
32 |
-
date: str = "" # submission date of request file
|
33 |
-
still_on_hub: bool = False
|
34 |
-
|
35 |
-
@classmethod
|
36 |
-
def init_from_json_file(self, json_filepath):
|
37 |
-
"""Inits the result from the specific model result file"""
|
38 |
-
with open(json_filepath) as fp:
|
39 |
-
data = json.load(fp)
|
40 |
-
|
41 |
-
config = data.get("config")
|
42 |
-
|
43 |
-
# Precision
|
44 |
-
precision = Precision.from_str(config.get("model_dtype"))
|
45 |
-
|
46 |
-
# Get model and org
|
47 |
-
org_and_model = config.get("model_name", config.get("model_args", None))
|
48 |
-
org_and_model = org_and_model.split("/", 1)
|
49 |
-
|
50 |
-
if len(org_and_model) == 1:
|
51 |
-
org = None
|
52 |
-
model = org_and_model[0]
|
53 |
-
result_key = f"{model}_{precision.value.name}"
|
54 |
-
else:
|
55 |
-
org = org_and_model[0]
|
56 |
-
model = org_and_model[1]
|
57 |
-
result_key = f"{org}_{model}_{precision.value.name}"
|
58 |
-
full_model = "/".join(org_and_model)
|
59 |
-
|
60 |
-
still_on_hub, _, model_config = is_model_on_hub(
|
61 |
-
full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
|
62 |
-
)
|
63 |
-
architecture = "?"
|
64 |
-
if model_config is not None:
|
65 |
-
architectures = getattr(model_config, "architectures", None)
|
66 |
-
if architectures:
|
67 |
-
architecture = ";".join(architectures)
|
68 |
-
|
69 |
-
# Extract results available in this file (some results are split in several files)
|
70 |
-
results = {}
|
71 |
-
for task in Tasks:
|
72 |
-
task = task.value
|
73 |
-
|
74 |
-
# We average all scores of a given metric (not all metrics are present in all files)
|
75 |
-
accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
|
76 |
-
if accs.size == 0 or any([acc is None for acc in accs]):
|
77 |
-
continue
|
78 |
-
|
79 |
-
mean_acc = np.mean(accs) * 100.0
|
80 |
-
results[task.benchmark] = mean_acc
|
81 |
-
|
82 |
-
return self(
|
83 |
-
eval_name=result_key,
|
84 |
-
full_model=full_model,
|
85 |
-
org=org,
|
86 |
-
model=model,
|
87 |
-
results=results,
|
88 |
-
precision=precision,
|
89 |
-
revision= config.get("model_sha", ""),
|
90 |
-
still_on_hub=still_on_hub,
|
91 |
-
architecture=architecture
|
92 |
-
)
|
93 |
-
|
94 |
-
def update_with_request_file(self, requests_path):
|
95 |
-
"""Finds the relevant request file for the current model and updates info with it"""
|
96 |
-
request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
|
97 |
-
|
98 |
-
try:
|
99 |
-
with open(request_file, "r") as f:
|
100 |
-
request = json.load(f)
|
101 |
-
self.model_type = ModelType.from_str(request.get("model_type", ""))
|
102 |
-
self.weight_type = WeightType[request.get("weight_type", "Original")]
|
103 |
-
self.license = request.get("license", "?")
|
104 |
-
self.likes = request.get("likes", 0)
|
105 |
-
self.num_params = request.get("params", 0)
|
106 |
-
self.date = request.get("submitted_time", "")
|
107 |
-
except Exception:
|
108 |
-
print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}")
|
109 |
-
|
110 |
-
def to_dict(self):
|
111 |
-
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
112 |
-
average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
|
113 |
-
data_dict = {
|
114 |
-
"eval_name": self.eval_name, # not a column, just a save name,
|
115 |
-
AutoEvalColumn.precision.name: self.precision.value.name,
|
116 |
-
AutoEvalColumn.model_type.name: self.model_type.value.name,
|
117 |
-
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
|
118 |
-
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
119 |
-
AutoEvalColumn.architecture.name: self.architecture,
|
120 |
-
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
121 |
-
AutoEvalColumn.revision.name: self.revision,
|
122 |
-
AutoEvalColumn.average.name: average,
|
123 |
-
AutoEvalColumn.license.name: self.license,
|
124 |
-
AutoEvalColumn.likes.name: self.likes,
|
125 |
-
AutoEvalColumn.params.name: self.num_params,
|
126 |
-
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
127 |
-
}
|
128 |
-
|
129 |
-
for task in Tasks:
|
130 |
-
data_dict[task.value.col_name] = self.results[task.value.benchmark]
|
131 |
-
|
132 |
-
return data_dict
|
133 |
-
|
134 |
-
|
135 |
-
def get_request_file_for_model(requests_path, model_name, precision):
|
136 |
-
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
|
137 |
-
request_files = os.path.join(
|
138 |
-
requests_path,
|
139 |
-
f"{model_name}_eval_request_*.json",
|
140 |
-
)
|
141 |
-
request_files = glob.glob(request_files)
|
142 |
-
|
143 |
-
# Select correct request file (precision)
|
144 |
-
request_file = ""
|
145 |
-
request_files = sorted(request_files, reverse=True)
|
146 |
-
for tmp_request_file in request_files:
|
147 |
-
with open(tmp_request_file, "r") as f:
|
148 |
-
req_content = json.load(f)
|
149 |
-
if (
|
150 |
-
req_content["status"] in ["FINISHED"]
|
151 |
-
and req_content["precision"] == precision.split(".")[-1]
|
152 |
-
):
|
153 |
-
request_file = tmp_request_file
|
154 |
-
return request_file
|
155 |
-
|
156 |
-
|
157 |
-
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
|
158 |
-
"""From the path of the results folder root, extract all needed info for results"""
|
159 |
-
model_result_filepaths = []
|
160 |
-
|
161 |
-
for root, _, files in os.walk(results_path):
|
162 |
-
# We should only have json files in model results
|
163 |
-
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
|
164 |
-
continue
|
165 |
-
|
166 |
-
# Sort the files by date
|
167 |
-
try:
|
168 |
-
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
|
169 |
-
except dateutil.parser._parser.ParserError:
|
170 |
-
files = [files[-1]]
|
171 |
-
|
172 |
-
for file in files:
|
173 |
-
model_result_filepaths.append(os.path.join(root, file))
|
174 |
-
|
175 |
-
eval_results = {}
|
176 |
-
for model_result_filepath in model_result_filepaths:
|
177 |
-
# Creation of result
|
178 |
-
eval_result = EvalResult.init_from_json_file(model_result_filepath)
|
179 |
-
eval_result.update_with_request_file(requests_path)
|
180 |
-
|
181 |
-
# Store results of same eval together
|
182 |
-
eval_name = eval_result.eval_name
|
183 |
-
if eval_name in eval_results.keys():
|
184 |
-
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
|
185 |
-
else:
|
186 |
-
eval_results[eval_name] = eval_result
|
187 |
-
|
188 |
-
results = []
|
189 |
-
for v in eval_results.values():
|
190 |
-
try:
|
191 |
-
v.to_dict() # we test if the dict version is complete
|
192 |
-
results.append(v)
|
193 |
-
except KeyError: # not all eval values present
|
194 |
-
continue
|
195 |
-
|
196 |
-
return results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/populate.py
DELETED
@@ -1,58 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import os
|
3 |
-
|
4 |
-
import pandas as pd
|
5 |
-
|
6 |
-
from src.display.formatting import has_no_nan_values, make_clickable_model
|
7 |
-
from src.display.utils import AutoEvalColumn, EvalQueueColumn
|
8 |
-
from src.leaderboard.read_evals import get_raw_eval_results
|
9 |
-
|
10 |
-
|
11 |
-
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
12 |
-
"""Creates a dataframe from all the individual experiment results"""
|
13 |
-
raw_data = get_raw_eval_results(results_path, requests_path)
|
14 |
-
all_data_json = [v.to_dict() for v in raw_data]
|
15 |
-
|
16 |
-
df = pd.DataFrame.from_records(all_data_json)
|
17 |
-
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
18 |
-
df = df[cols].round(decimals=2)
|
19 |
-
|
20 |
-
# filter out if any of the benchmarks have not been produced
|
21 |
-
df = df[has_no_nan_values(df, benchmark_cols)]
|
22 |
-
return df
|
23 |
-
|
24 |
-
|
25 |
-
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
26 |
-
"""Creates the different dataframes for the evaluation queues requestes"""
|
27 |
-
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
|
28 |
-
all_evals = []
|
29 |
-
|
30 |
-
for entry in entries:
|
31 |
-
if ".json" in entry:
|
32 |
-
file_path = os.path.join(save_path, entry)
|
33 |
-
with open(file_path) as fp:
|
34 |
-
data = json.load(fp)
|
35 |
-
|
36 |
-
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
|
37 |
-
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
|
38 |
-
|
39 |
-
all_evals.append(data)
|
40 |
-
elif ".md" not in entry:
|
41 |
-
# this is a folder
|
42 |
-
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")]
|
43 |
-
for sub_entry in sub_entries:
|
44 |
-
file_path = os.path.join(save_path, entry, sub_entry)
|
45 |
-
with open(file_path) as fp:
|
46 |
-
data = json.load(fp)
|
47 |
-
|
48 |
-
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
|
49 |
-
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
|
50 |
-
all_evals.append(data)
|
51 |
-
|
52 |
-
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
|
53 |
-
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
|
54 |
-
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
|
55 |
-
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
|
56 |
-
df_running = pd.DataFrame.from_records(running_list, columns=cols)
|
57 |
-
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
|
58 |
-
return df_finished[cols], df_running[cols], df_pending[cols]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/submission/check_validity.py
DELETED
@@ -1,99 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import os
|
3 |
-
import re
|
4 |
-
from collections import defaultdict
|
5 |
-
from datetime import datetime, timedelta, timezone
|
6 |
-
|
7 |
-
import huggingface_hub
|
8 |
-
from huggingface_hub import ModelCard
|
9 |
-
from huggingface_hub.hf_api import ModelInfo
|
10 |
-
from transformers import AutoConfig
|
11 |
-
from transformers.models.auto.tokenization_auto import AutoTokenizer
|
12 |
-
|
13 |
-
def check_model_card(repo_id: str) -> tuple[bool, str]:
|
14 |
-
"""Checks if the model card and license exist and have been filled"""
|
15 |
-
try:
|
16 |
-
card = ModelCard.load(repo_id)
|
17 |
-
except huggingface_hub.utils.EntryNotFoundError:
|
18 |
-
return False, "Please add a model card to your model to explain how you trained/fine-tuned it."
|
19 |
-
|
20 |
-
# Enforce license metadata
|
21 |
-
if card.data.license is None:
|
22 |
-
if not ("license_name" in card.data and "license_link" in card.data):
|
23 |
-
return False, (
|
24 |
-
"License not found. Please add a license to your model card using the `license` metadata or a"
|
25 |
-
" `license_name`/`license_link` pair."
|
26 |
-
)
|
27 |
-
|
28 |
-
# Enforce card content
|
29 |
-
if len(card.text) < 200:
|
30 |
-
return False, "Please add a description to your model card, it is too short."
|
31 |
-
|
32 |
-
return True, ""
|
33 |
-
|
34 |
-
def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]:
|
35 |
-
"""Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
|
36 |
-
try:
|
37 |
-
config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
|
38 |
-
if test_tokenizer:
|
39 |
-
try:
|
40 |
-
tk = AutoTokenizer.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
|
41 |
-
except ValueError as e:
|
42 |
-
return (
|
43 |
-
False,
|
44 |
-
f"uses a tokenizer which is not in a transformers release: {e}",
|
45 |
-
None
|
46 |
-
)
|
47 |
-
except Exception as e:
|
48 |
-
return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None)
|
49 |
-
return True, None, config
|
50 |
-
|
51 |
-
except ValueError:
|
52 |
-
return (
|
53 |
-
False,
|
54 |
-
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
|
55 |
-
None
|
56 |
-
)
|
57 |
-
|
58 |
-
except Exception as e:
|
59 |
-
return False, "was not found on hub!", None
|
60 |
-
|
61 |
-
|
62 |
-
def get_model_size(model_info: ModelInfo, precision: str):
|
63 |
-
"""Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
|
64 |
-
try:
|
65 |
-
model_size = round(model_info.safetensors["total"] / 1e9, 3)
|
66 |
-
except (AttributeError, TypeError):
|
67 |
-
return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
|
68 |
-
|
69 |
-
size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
|
70 |
-
model_size = size_factor * model_size
|
71 |
-
return model_size
|
72 |
-
|
73 |
-
def get_model_arch(model_info: ModelInfo):
|
74 |
-
"""Gets the model architecture from the configuration"""
|
75 |
-
return model_info.config.get("architectures", "Unknown")
|
76 |
-
|
77 |
-
def already_submitted_models(requested_models_dir: str) -> set[str]:
|
78 |
-
"""Gather a list of already submitted models to avoid duplicates"""
|
79 |
-
depth = 1
|
80 |
-
file_names = []
|
81 |
-
users_to_submission_dates = defaultdict(list)
|
82 |
-
|
83 |
-
for root, _, files in os.walk(requested_models_dir):
|
84 |
-
current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
|
85 |
-
if current_depth == depth:
|
86 |
-
for file in files:
|
87 |
-
if not file.endswith(".json"):
|
88 |
-
continue
|
89 |
-
with open(os.path.join(root, file), "r") as f:
|
90 |
-
info = json.load(f)
|
91 |
-
file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
|
92 |
-
|
93 |
-
# Select organisation
|
94 |
-
if info["model"].count("/") == 0 or "submitted_time" not in info:
|
95 |
-
continue
|
96 |
-
organisation, _ = info["model"].split("/")
|
97 |
-
users_to_submission_dates[organisation].append(info["submitted_time"])
|
98 |
-
|
99 |
-
return set(file_names), users_to_submission_dates
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/submission/submit.py
DELETED
@@ -1,119 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import os
|
3 |
-
from datetime import datetime, timezone
|
4 |
-
|
5 |
-
from src.display.formatting import styled_error, styled_message, styled_warning
|
6 |
-
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
|
7 |
-
from src.submission.check_validity import (
|
8 |
-
already_submitted_models,
|
9 |
-
check_model_card,
|
10 |
-
get_model_size,
|
11 |
-
is_model_on_hub,
|
12 |
-
)
|
13 |
-
|
14 |
-
REQUESTED_MODELS = None
|
15 |
-
USERS_TO_SUBMISSION_DATES = None
|
16 |
-
|
17 |
-
def add_new_eval(
|
18 |
-
model: str,
|
19 |
-
base_model: str,
|
20 |
-
revision: str,
|
21 |
-
precision: str,
|
22 |
-
weight_type: str,
|
23 |
-
model_type: str,
|
24 |
-
):
|
25 |
-
global REQUESTED_MODELS
|
26 |
-
global USERS_TO_SUBMISSION_DATES
|
27 |
-
if not REQUESTED_MODELS:
|
28 |
-
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
|
29 |
-
|
30 |
-
user_name = ""
|
31 |
-
model_path = model
|
32 |
-
if "/" in model:
|
33 |
-
user_name = model.split("/")[0]
|
34 |
-
model_path = model.split("/")[1]
|
35 |
-
|
36 |
-
precision = precision.split(" ")[0]
|
37 |
-
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
|
38 |
-
|
39 |
-
if model_type is None or model_type == "":
|
40 |
-
return styled_error("Please select a model type.")
|
41 |
-
|
42 |
-
# Does the model actually exist?
|
43 |
-
if revision == "":
|
44 |
-
revision = "main"
|
45 |
-
|
46 |
-
# Is the model on the hub?
|
47 |
-
if weight_type in ["Delta", "Adapter"]:
|
48 |
-
base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
|
49 |
-
if not base_model_on_hub:
|
50 |
-
return styled_error(f'Base model "{base_model}" {error}')
|
51 |
-
|
52 |
-
if not weight_type == "Adapter":
|
53 |
-
model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
|
54 |
-
if not model_on_hub:
|
55 |
-
return styled_error(f'Model "{model}" {error}')
|
56 |
-
|
57 |
-
# Is the model info correctly filled?
|
58 |
-
try:
|
59 |
-
model_info = API.model_info(repo_id=model, revision=revision)
|
60 |
-
except Exception:
|
61 |
-
return styled_error("Could not get your model information. Please fill it up properly.")
|
62 |
-
|
63 |
-
model_size = get_model_size(model_info=model_info, precision=precision)
|
64 |
-
|
65 |
-
# Were the model card and license filled?
|
66 |
-
try:
|
67 |
-
license = model_info.cardData["license"]
|
68 |
-
except Exception:
|
69 |
-
return styled_error("Please select a license for your model")
|
70 |
-
|
71 |
-
modelcard_OK, error_msg = check_model_card(model)
|
72 |
-
if not modelcard_OK:
|
73 |
-
return styled_error(error_msg)
|
74 |
-
|
75 |
-
# Seems good, creating the eval
|
76 |
-
print("Adding new eval")
|
77 |
-
|
78 |
-
eval_entry = {
|
79 |
-
"model": model,
|
80 |
-
"base_model": base_model,
|
81 |
-
"revision": revision,
|
82 |
-
"precision": precision,
|
83 |
-
"weight_type": weight_type,
|
84 |
-
"status": "PENDING",
|
85 |
-
"submitted_time": current_time,
|
86 |
-
"model_type": model_type,
|
87 |
-
"likes": model_info.likes,
|
88 |
-
"params": model_size,
|
89 |
-
"license": license,
|
90 |
-
"private": False,
|
91 |
-
}
|
92 |
-
|
93 |
-
# Check for duplicate submission
|
94 |
-
if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
|
95 |
-
return styled_warning("This model has been already submitted.")
|
96 |
-
|
97 |
-
print("Creating eval file")
|
98 |
-
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
|
99 |
-
os.makedirs(OUT_DIR, exist_ok=True)
|
100 |
-
out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
|
101 |
-
|
102 |
-
with open(out_path, "w") as f:
|
103 |
-
f.write(json.dumps(eval_entry))
|
104 |
-
|
105 |
-
print("Uploading eval file")
|
106 |
-
API.upload_file(
|
107 |
-
path_or_fileobj=out_path,
|
108 |
-
path_in_repo=out_path.split("eval-queue/")[1],
|
109 |
-
repo_id=QUEUE_REPO,
|
110 |
-
repo_type="dataset",
|
111 |
-
commit_message=f"Add {model} to eval queue",
|
112 |
-
)
|
113 |
-
|
114 |
-
# Remove the local file
|
115 |
-
os.remove(out_path)
|
116 |
-
|
117 |
-
return styled_message(
|
118 |
-
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
|
119 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|