jjuun commited on
Commit
82469d1
1 Parent(s): fce89ef

first commit

Browse files
Files changed (2) hide show
  1. app.py +99 -0
  2. utils.py +23 -0
app.py ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ import random
4
+ import torch
5
+
6
+ from diffusers import StableDiffusionXLPipeline, AutoencoderKL
7
+ from utils import randomize_seed_fn
8
+
9
+ MAX_SEED = np.iinfo(np.int32).max
10
+
11
+ def model_load():
12
+ vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
13
+ pipe = StableDiffusionXLPipeline.from_pretrained(
14
+ "stabilityai/stable-diffusion-xl-base-1.0", vae=vae, torch_dtype=torch.float16
15
+ )
16
+ # load lora weight
17
+ pipe.load_lora_weights("jjuun/vivid_color_style")
18
+
19
+ return pipe.to('cuda')
20
+
21
+
22
+ def sdxl_process(seed, prompt, additional_prompt, negative_prompt, num_steps, guidance_scale):
23
+ pipe = model_load()
24
+ generator = torch.Generator("cuda")
25
+ generator.manual_seed(seed)
26
+
27
+ special_prompt = 'jjj, scratch art style'
28
+ prompt = f'{special_prompt}, {prompt}, with a black background'
29
+ output = pipe(prompt, additional_prompt, negative_prompt=negative_prompt, num_inference_steps=num_steps, guidance_scale=guidance_scale,
30
+ generator=generator).images[0]
31
+
32
+ return output
33
+
34
+
35
+ title = "🌈 Colorful illustration"
36
+ description_en = "🚀 How to use: please make sure to include 'a colorful' in prompt and click Run button!"
37
+
38
+
39
+ def create_demo():
40
+
41
+ with gr.Blocks() as demo:
42
+ gr.Markdown(f"<h1 style='text-align: center;'>{title}</h1>")
43
+ gr.Markdown(f"<h3 style='text-align: center'>{description_en}</h3>")
44
+
45
+ with gr.Row():
46
+ with gr.Column():
47
+ prompt = gr.Textbox(label="Prompt")
48
+ run_button = gr.Button("Run")
49
+ with gr.Accordion("Advanced options", open=False):
50
+
51
+ num_steps = gr.Slider(label="Number of steps", minimum=1, maximum=100, value=20, step=1)
52
+ guidance_scale = gr.Slider(label="Guidance scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
53
+ seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
54
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
55
+ a_prompt = gr.Textbox(label="Additional prompt", value="")
56
+ n_prompt = gr.Textbox(
57
+ label="Negative prompt",
58
+ value="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
59
+ )
60
+ with gr.Column():
61
+ result = gr.Image(label="Output")
62
+ result_seed = gr.Textbox(label="Used seed")
63
+
64
+ gr.Examples(
65
+
66
+ examples= [["a colorful lion", "20", "9", "0", "", "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality", "examples/lion.png"],
67
+ ["a colorful messi", "20", "9", "0", "", "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality", "examples/messi.png"]],
68
+ inputs = [prompt, num_steps, guidance_scale, seed, a_prompt, n_prompt, result]
69
+ )
70
+
71
+ inputs = [
72
+ seed,
73
+ prompt,
74
+ a_prompt,
75
+ n_prompt,
76
+ num_steps,
77
+ guidance_scale,
78
+ ]
79
+
80
+ run_button.click(
81
+ fn=randomize_seed_fn,
82
+ inputs=[seed, randomize_seed],
83
+ outputs=result_seed,
84
+ queue=False,
85
+ api_name=False,
86
+ ).then(
87
+ fn=sdxl_process,
88
+ inputs=inputs,
89
+ outputs=result,
90
+ api_name=False,
91
+ )
92
+
93
+
94
+ return demo
95
+
96
+
97
+ if __name__ == "__main__":
98
+ demo = create_demo()
99
+ demo.queue().launch()
utils.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import random
3
+ import torch
4
+ import os
5
+
6
+
7
+ def seed_everything(seed: int = 42):
8
+ random.seed(seed)
9
+ np.random.seed(seed)
10
+ os.environ["PYTHONHASHSEED"] = str(seed)
11
+ torch.manual_seed(seed)
12
+ torch.cuda.manual_seed(seed) # type: ignore
13
+ torch.backends.cudnn.deterministic = True # type: ignore
14
+ torch.backends.cudnn.benchmark = True # type: ignore
15
+
16
+
17
+ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
18
+ MAX_SEED = np.iinfo(np.int32).max
19
+
20
+ if randomize_seed:
21
+ seed = random.randint(0, MAX_SEED)
22
+ seed_everything(seed)
23
+ return seed