File size: 1,946 Bytes
9b87edc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import numpy as np
from human_pose_estimator.modules.pose import Pose


def rect(estimator, img: np.ndarray, height_size=512):
    num_keypoints = Pose.num_kpts
    _, pose_entries, all_keypoints = estimator.get_poses(img, height_size)

    rects = []
    for n in range(len(pose_entries)):
        if len(pose_entries[n]) == 0:
            continue
        pose_keypoints = np.ones((num_keypoints, 2), dtype=np.int32) * -1

        valid_keypoints = []
        for kpt_id in range(num_keypoints):
            if pose_entries[n][kpt_id] != -1.0:  # keypoint was found
                pose_keypoints[kpt_id, 0] = int(all_keypoints[int(pose_entries[n][kpt_id]), 0])
                pose_keypoints[kpt_id, 1] = int(all_keypoints[int(pose_entries[n][kpt_id]), 1])
                valid_keypoints.append([pose_keypoints[kpt_id, 0], pose_keypoints[kpt_id, 1]])
        valid_keypoints = np.array(valid_keypoints)

        if pose_entries[n][10] != -1.0 or pose_entries[n][13] != -1.0:
            pmin = valid_keypoints.min(0)
            pmax = valid_keypoints.max(0)

            center = (0.5 * (pmax[:2] + pmin[:2])).astype(np.int32)
            radius = int(0.65 * max(pmax[0] - pmin[0], pmax[1] - pmin[1]))
        elif pose_entries[n][10] == -1.0 and pose_entries[n][13] == -1.0 and pose_entries[n][8] != -1.0 and \
                pose_entries[n][11] != -1.0:
            # if leg is missing, use pelvis to get cropping
            center = (0.5 * (pose_keypoints[8] + pose_keypoints[11])).astype(np.int32)
            radius = int(1.45 * np.sqrt(((center[None, :] - valid_keypoints) ** 2).sum(1)).max(0))
            center[1] += int(0.05 * radius)
        else:
            center = np.array([img.shape[1] // 2, img.shape[0] // 2])
            radius = max(img.shape[1] // 2, img.shape[0] // 2)

        x1 = center[0] - radius
        y1 = center[1] - radius

        rects.append([x1, y1, 2 * radius, 2 * radius])

    return img, rects