import torch import gradio as gr from peft import PeftModel from transformers import AutoModelForCausalLM, AutoTokenizer import transformers adapters_name = "1littlecoder/mistral-7b-mj-finetuned" model_name = "bn22/Mistral-7B-Instruct-v0.1-sharded" model = AutoModelForCausalLM.from_pretrained( model_name ) model = PeftModel.from_pretrained(model, adapters_name) tokenizer = AutoTokenizer.from_pretrained(model_name) tokenizer.bos_token_id = 1 stop_token_ids = [0] print(f"Successfully loaded the model {model_name} into memory") def remove_substring(original_string, substring_to_remove): # Replace the substring with an empty string result_string = original_string.replace(substring_to_remove, '') return result_string def list_to_string(input_list, delimiter=" "): """ Convert a list to a string, joining elements with the specified delimiter. :param input_list: The list to convert to a string. :param delimiter: The separator to use between elements (default is a space). :return: A string composed of list elements separated by the delimiter. """ return delimiter.join(map(str, input_list)) def format_prompt(message, history): prompt = "" for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt def generate( prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, ): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) formatted_prompt = format_prompt(prompt, history) encoded = tokenizer(formatted_prompt, return_tensors="pt", add_special_tokens=False) model_input = encoded generated_ids = model.generate(**model_input, max_new_tokens=200, do_sample=True) list_output = tokenizer.batch_decode(generated_ids) string_output = list_to_string(list_output) possible_output = remove_substring(string_output,formatted_prompt) return possible_output additional_inputs=[ gr.Slider( label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs", ), gr.Slider( label="Max new tokens", value=256, minimum=0, maximum=1048, step=64, interactive=True, info="The maximum numbers of new tokens", ), gr.Slider( label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens", ), gr.Slider( label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens", ) ] css = """ #mkd { height: 500px; overflow: auto; border: 1px solid #ccc; } """ with gr.Blocks(css=css) as demo: gr.HTML("

Mistral 7B Instruct

") gr.HTML("

In this demo, you can chat with Mistral-7B-Instruct model. 💬

") gr.HTML("

Learn more about the model here. 📚

") gr.ChatInterface( generate, additional_inputs=additional_inputs, examples=[["What is the secret to life?"], ["Write me a recipe for pancakes."]] ) demo.queue(concurrency_count=75, max_size=100).launch(debug=True)