|
import gradio as gr |
|
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration |
|
from PIL import Image |
|
import torch |
|
|
|
|
|
model_id = "pyimagesearch/finetuned_paligemma_vqav2_small" |
|
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id) |
|
processor = AutoProcessor.from_pretrained("google/paligemma-3b-pt-224") |
|
|
|
|
|
def process_image(image, prompt): |
|
|
|
inputs = processor(image.convert("RGB"), prompt, return_tensors="pt") |
|
|
|
try: |
|
|
|
output = model.generate(**inputs, max_new_tokens=20) |
|
|
|
|
|
decoded_output = processor.decode(output[0], skip_special_tokens=True) |
|
|
|
|
|
return decoded_output[len(prompt):] |
|
except IndexError as e: |
|
print(f"IndexError: {e}") |
|
return "An error occurred during processing." |
|
|
|
|
|
inputs = [ |
|
gr.Image(type="pil"), |
|
gr.Textbox(label="Prompt", placeholder="Enter your question") |
|
] |
|
outputs = gr.Textbox(label="Answer") |
|
|
|
|
|
demo = gr.Interface(fn=process_image, inputs=inputs, outputs=outputs, title="Visual Question Answering with Fine-tuned PaliGemma Model", |
|
description="Upload an image and ask questions to get answers.") |
|
|
|
|
|
demo.launch() |