Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
+
|
6 |
+
# Load model and processor
|
7 |
+
model_id = "pyimagesearch/finetuned_paligemma_vqav2_small"
|
8 |
+
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id)
|
9 |
+
processor = AutoProcessor.from_pretrained("google/paligemma-3b-pt-224")
|
10 |
+
|
11 |
+
# Define inference function
|
12 |
+
def process_image(image, prompt):
|
13 |
+
# Process the image and prompt using the processor
|
14 |
+
inputs = processor(image.convert("RGB"), prompt, return_tensors="pt")
|
15 |
+
|
16 |
+
# Print the inputs to debug
|
17 |
+
print("Processor outputs:", inputs)
|
18 |
+
|
19 |
+
try:
|
20 |
+
# Generate output from the model
|
21 |
+
output = model.generate(**inputs, max_new_tokens=20)
|
22 |
+
|
23 |
+
# Decode and return the output
|
24 |
+
decoded_output = processor.decode(output[0], skip_special_tokens=True)
|
25 |
+
|
26 |
+
# Return the answer (exclude the prompt part from output)
|
27 |
+
return decoded_output[len(prompt):]
|
28 |
+
except IndexError as e:
|
29 |
+
print(f"IndexError: {e}")
|
30 |
+
return "An error occurred during processing."
|
31 |
+
|
32 |
+
# Define the Gradio interface
|
33 |
+
inputs = [
|
34 |
+
gr.Image(type="pil"),
|
35 |
+
gr.Textbox(label="Prompt", placeholder="Enter your question")
|
36 |
+
]
|
37 |
+
outputs = gr.Textbox(label="Answer")
|
38 |
+
|
39 |
+
# Create the Gradio app
|
40 |
+
demo = gr.Interface(fn=process_image, inputs=inputs, outputs=outputs, title="Visual Question Answering with Fine-tuned PaliGemma Model",
|
41 |
+
description="Upload an image and ask questions to get answers.")
|
42 |
+
|
43 |
+
# Launch the app
|
44 |
+
demo.launch()
|