pzangara commited on
Commit
1994179
1 Parent(s): 093f866

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +20 -2
app.py CHANGED
@@ -10,6 +10,25 @@ import pandas as pd
10
  model_name = "MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7"
11
  tokenizer = AutoTokenizer.from_pretrained(model_name)
12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  def clasificador(input1, input2):
14
  classifier = pipeline("zero-shot-classification", model="MoritzLaurer/mDeBERTa-v3-base-mnli-xnli",tokenizer=tokenizer)
15
  sequence_to_classify = input1
@@ -18,8 +37,7 @@ def clasificador(input1, input2):
18
  output0 = classifier(sequence_to_classify, candidate_labels, multi_label=False)
19
  output1=pd.DataFrame(output0)
20
  output1=output1.iloc[:,1:3]
21
- analyzer = create_analyzer(task="sentiment", lang="es")
22
- output2=analyzer.predict(input1)
23
  return output1, output2
24
 
25
 
 
10
  model_name = "MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7"
11
  tokenizer = AutoTokenizer.from_pretrained(model_name)
12
 
13
+
14
+ def classify_text(text):
15
+ """
16
+ Clasifica un texto como positivo, negativo o neutro utilizando un clasificador.
17
+ Args:
18
+ text (str): El texto a clasificar.
19
+ Returns:
20
+ str: La clasificación del texto, que puede ser "Positivo", "Negativo" o "Neutro".
21
+ """
22
+ analyzer = create_analyzer(task="sentiment", lang="es")
23
+ result = analyzer.predict(text)[0]['label']
24
+ #result = classifier(text)[0]['label']
25
+ if result == "POS":
26
+ return "Positivo"
27
+ elif result == "NEG":
28
+ return "Negativo"
29
+ else:
30
+ return "Neutro"
31
+
32
  def clasificador(input1, input2):
33
  classifier = pipeline("zero-shot-classification", model="MoritzLaurer/mDeBERTa-v3-base-mnli-xnli",tokenizer=tokenizer)
34
  sequence_to_classify = input1
 
37
  output0 = classifier(sequence_to_classify, candidate_labels, multi_label=False)
38
  output1=pd.DataFrame(output0)
39
  output1=output1.iloc[:,1:3]
40
+ output2=classify_text(input1)
 
41
  return output1, output2
42
 
43