Spaces:
qatiba
/
Runtime error

File size: 3,712 Bytes
c6919c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "6a682b61",
   "metadata": {},
   "source": [
    "# Benchmarking small models on CPU\n",
    " - We can enable small models with the `SUNO_USE_SMALL_MODELS` environment variable"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "9500dd93",
   "metadata": {},
   "outputs": [
    {
     "ename": "SyntaxError",
     "evalue": "invalid syntax (1816758531.py, line 9)",
     "output_type": "error",
     "traceback": [
      "\u001b[0;36m  Cell \u001b[0;32mIn[5], line 9\u001b[0;36m\u001b[0m\n\u001b[0;31m    from '../bark' import generate_audio, preload_models, SAMPLE_RATE\u001b[0m\n\u001b[0m         ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n"
     ]
    }
   ],
   "source": [
    "import os\n",
    "\n",
    "os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"\"\n",
    "os.environ[\"SUNO_USE_SMALL_MODELS\"] = \"1\"\n",
    "\n",
    "from IPython.display import Audio\n",
    "import numpy as np\n",
    "\n",
    "from '../bark' import generate_audio, preload_models, SAMPLE_RATE\n",
    "\n",
    "import time"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "4e3454b6",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "No GPU being used. Careful, inference might be very slow!\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "CPU times: user 5.52 s, sys: 2.34 s, total: 7.86 s\n",
      "Wall time: 4.33 s\n"
     ]
    }
   ],
   "source": [
    "%%time\n",
    "preload_models()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "f6024e5f",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 100/100 [00:10<00:00,  9.89it/s]\n",
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 15/15 [00:43<00:00,  2.90s/it]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "took 62s to generate 6s of audio\n"
     ]
    }
   ],
   "source": [
    "t0 = time.time()\n",
    "text = \"In the light of the moon, a little egg lay on a leaf\"\n",
    "audio_array = generate_audio(text)\n",
    "generation_duration_s = time.time() - t0\n",
    "audio_duration_s = audio_array.shape[0] / SAMPLE_RATE\n",
    "\n",
    "print(f\"took {generation_duration_s:.0f}s to generate {audio_duration_s:.0f}s of audio\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "2dcce86c",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "10"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "os.cpu_count()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3046eddb",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}