{ "cells": [ { "cell_type": "markdown", "id": "90641144", "metadata": {}, "source": [ "# Bark Memory Profiling\n", "Bark has two ways to reduce GPU memory: \n", " - Small models: a smaller version of the model. This can be set by using the environment variable `SUNO_USE_SMALL_MODELS`\n", " - offloading models to CPU: Holding only one model at a time on the GPU, and shuttling the models to the CPU in between generations. \n", "\n", "## NOTE: this requires a GPU to run\n", "\n", "# $ \\\\ $\n", "## First, we'll use the most memory efficient configuration" ] }, { "cell_type": "code", "execution_count": 1, "id": "39ea4bed", "metadata": {}, "outputs": [], "source": [ "import os\n", "\n", "os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"0\"\n", "os.environ[\"SUNO_USE_SMALL_MODELS\"] = \"1\"\n", "os.environ[\"SUNO_OFFLOAD_CPU\"] = \"1\"\n", "\n", "from bark.generation import preload_models\n", "from bark import generate_audio, SAMPLE_RATE\n", "\n", "import torch" ] }, { "cell_type": "code", "execution_count": 2, "id": "66b0c006", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "100%|██████████████████████████████████████████████████████████████████████| 100/100 [00:01<00:00, 62.17it/s]\n", "100%|████████████████████████████████████████████████████████████████████████| 10/10 [00:03<00:00, 2.74it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "max memory usage = 2396MB\n" ] } ], "source": [ "torch.cuda.reset_peak_memory_stats()\n", "preload_models()\n", "audio_array = generate_audio(\"madam I'm adam\", history_prompt=\"v2/en_speaker_5\")\n", "max_utilization = torch.cuda.max_memory_allocated()\n", "print(f\"max memory usage = {max_utilization / 1024 / 1024:.0f}MB\")" ] }, { "cell_type": "code", "execution_count": null, "id": "9922dd2d", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "bdbe578e", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "id": "213d1b5b", "metadata": {}, "source": [ "# Memory Profiling:\n", "We can profile the memory consumption of 4 scenarios\n", " - Small models, offloading to CPU\n", " - Large models, offloading to CPU\n", " - Small models, not offloading to CPU\n", " - Large models, not offloading to CPU" ] }, { "cell_type": "code", "execution_count": 1, "id": "417d5e9c", "metadata": {}, "outputs": [], "source": [ "import os\n", "from bark.generation import preload_models\n", "from bark import generate_audio, SAMPLE_RATE\n", "import torch\n", "import time" ] }, { "cell_type": "markdown", "id": "f4d19d60", "metadata": {}, "source": [] }, { "cell_type": "code", "execution_count": 2, "id": "cd83b45d", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Small models True, offloading to CPU: True\n", "\tmax memory usage = 2949MB, time 3s\n", "\n", "Small models False, offloading to CPU: True\n", "\tmax memory usage = 7826MB, time 4s\n", "\n", "Small models True, offloading to CPU: False\n", "\tmax memory usage = 5504MB, time 2s\n", "\n", "Small models False, offloading to CPU: False\n", "\tmax memory usage = 7825MB, time 5s\n", "\n" ] } ], "source": [ "offload_models = True\n", "use_small_models = True\n", "\n", "for offload_models in (True, False):\n", " for use_small_models in (True, False):\n", " torch.cuda.reset_peak_memory_stats()\n", " preload_models(\n", " text_use_small=use_small_models,\n", " coarse_use_small=use_small_models,\n", " fine_use_small=use_small_models,\n", " force_reload=True,\n", " )\n", " t0 = time.time()\n", " audio_array = generate_audio(\"madam I'm adam\", history_prompt=\"v2/en_speaker_5\", silent=True)\n", " dur = time.time() - t0\n", " max_utilization = torch.cuda.max_memory_allocated()\n", " print(f\"Small models {use_small_models}, offloading to CPU: {offload_models}\")\n", " print(f\"\\tmax memory usage = {max_utilization / 1024 / 1024:.0f}MB, time {dur:.0f}s\\n\")" ] }, { "cell_type": "code", "execution_count": null, "id": "bfe5fa06", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.16" } }, "nbformat": 4, "nbformat_minor": 5 }