{ "cells": [ { "cell_type": "markdown", "id": "6a682b61", "metadata": {}, "source": [ "# Benchmarking small models on CPU\n", " - We can enable small models with the `SUNO_USE_SMALL_MODELS` environment variable" ] }, { "cell_type": "code", "execution_count": 5, "id": "9500dd93", "metadata": {}, "outputs": [ { "ename": "SyntaxError", "evalue": "invalid syntax (1816758531.py, line 9)", "output_type": "error", "traceback": [ "\u001b[0;36m Cell \u001b[0;32mIn[5], line 9\u001b[0;36m\u001b[0m\n\u001b[0;31m from '../bark' import generate_audio, preload_models, SAMPLE_RATE\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" ] } ], "source": [ "import os\n", "\n", "os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"\"\n", "os.environ[\"SUNO_USE_SMALL_MODELS\"] = \"1\"\n", "\n", "from IPython.display import Audio\n", "import numpy as np\n", "\n", "from '../bark' import generate_audio, preload_models, SAMPLE_RATE\n", "\n", "import time" ] }, { "cell_type": "code", "execution_count": 2, "id": "4e3454b6", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "No GPU being used. Careful, inference might be very slow!\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "CPU times: user 5.52 s, sys: 2.34 s, total: 7.86 s\n", "Wall time: 4.33 s\n" ] } ], "source": [ "%%time\n", "preload_models()" ] }, { "cell_type": "code", "execution_count": 3, "id": "f6024e5f", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "100%|████████████████████████████████████████████████████████| 100/100 [00:10<00:00, 9.89it/s]\n", "100%|██████████████████████████████████████████████████████████| 15/15 [00:43<00:00, 2.90s/it]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "took 62s to generate 6s of audio\n" ] } ], "source": [ "t0 = time.time()\n", "text = \"In the light of the moon, a little egg lay on a leaf\"\n", "audio_array = generate_audio(text)\n", "generation_duration_s = time.time() - t0\n", "audio_duration_s = audio_array.shape[0] / SAMPLE_RATE\n", "\n", "print(f\"took {generation_duration_s:.0f}s to generate {audio_duration_s:.0f}s of audio\")" ] }, { "cell_type": "code", "execution_count": 4, "id": "2dcce86c", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "10" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "os.cpu_count()" ] }, { "cell_type": "code", "execution_count": null, "id": "3046eddb", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.12" } }, "nbformat": 4, "nbformat_minor": 5 }